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ABSTRACT 

The second chance offer is a common seller practice on eBay. It consists of price 

discrimination against the losing bidder, who is offered an identical item at the value of his 

or her highest bid. Prior work has shown that, if the price discrimination is certain—that is, 

the items are always offered to bidders at their highest losing bids—bidders can predict it, 

and it results in revenue loss for the seller. This dissertation hence allows the seller to 

randomize his strategy. It examines a similar, more general problem: a seller has k items. 

They are sold to n bidders in a two-stage game. The first stage is a sealed-bid private-value 

auction with n bidders. The second stage is a take-it-or-leave-it offer to each of k−1 losing 

bidders; randomized between a fixed-price offer and a second-chance offer. Showing that 

analytic techniques do not provide complete solutions because bidding strategies are not 

always monotonic increasing, this dissertation uses genetic algorithm simulations to 

determine the Bayesian (near-Nash) equilibrium strategies for bidders and sellers, for n = 8 

and different values of k. It analyzes item scarcity and two types of auction mechanisms for 

the first stage: first-price auction and second-price auction. It tests the approach on real 

eBay data, and a rational bidding tool is implemented to illustrate the practical use of this 

model on eBay. This dissertation’s use of randomized seller strategies and genetic 

algorithm simulations is unique in the study of the second-chance offer. 
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CHAPTER 1: INTRODUCTION 

It is no longer novel to exchange personal information for merchandise or money. For 

example, millions of consumers trade personal information-- such as home address, age, 

gender --for grocery discount membership. Popular e-commerce sites, such as Amazon, 

offer a discount coupon feature, the “gold box” for items related to an individual’s previous 

purchase, encouraging individuals to allow their purchases to be linked. At first glance, and 

to the naïve consumer, the revelation of personal information does seem to only provide a 

financial benefit; however, immediate gratification may have a negative impact in the later 

stage. For example, filling out a questionnaire online in exchange for a free t-shirt will lead 

to numerous junk mails in the future. A study has shown that consumers tend to not take 

later consequences into consideration [Acquisti 04]; it is possible that this is because future 

impact is too ambiguous to take into immediate consideration. Thus, privacy, especially in 

the numerous possible online interactions, is not well understood, either by researchers or 

by consumers. Researchers do not have a formalization of the privacy problem that 

balances the benefits with the costs, and, as a result, consumers do not completely 

understand the consequences of revealing information, nor, if they did understand the 

consequence, do they have a means of determining a best response. 

 

This dissertation presents a quantitative privacy model based on game theory. The model 

takes into account the fact that information revelation may provide advantages, as well as 

bear costs. In the model, privacy is treated as protection from information revelation in a 

multi-stage game. Interactions online, with merchants or other service providers, may be 
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viewed as stages of a multi-stage game. Actions in one stage typically reveal information 

about the player, and result in positive or negative repercussions in a later stage. The 

dissertation applies this model to a special type of online interaction: eBay’s second-chance 

offer.  

 

Note that, if future impact is not ambiguous, as it is now, rational agents can help players, 

such as consumers, to play rationally. One may hence imagine the model presented in this 

dissertation as enabling a privacy infrastructure where, in addition to security tools for the 

protection of personal information, rational agent tools helped a consumer decide how 

much information to reveal, when, and to whom. Today, however, the basic building 

blocks for such an infrastructure do not exist. For example, how would one derive a 

strategy given a set of stages (auctions, retail sales, etc.) in a game? How does one 

determine when it is useful to protect a player in a game (like a bidder in an auction) and 

not reveal the identity of the player? When is it useful for the player to be recognized? Can 

we build automatic tools with optimal bidding strategies in mind? This dissertation focuses 

on a generalization of eBay’s second-chance offer to make more specific the privacy 

problem and to provide strategies for the consumer that best balance benefit with cost.  

 

1.1 The Second-Chance Offer and a Generalization 

Consider an open-cry first-price private-value auction such as on eBay. If the auction is a 

stand-alone game not connected to any other, and timing effects are ignored, the best 

strategy for each bidder is to bid higher than other bidders, up to x, his valuation. Thus, at 

the end of the auction, only the winning bidder has not bid as high as his valuation. On the 



www.manaraa.com

 

 3  

other hand, the highest losing bids of all other bidders, who have dropped out of the 

bidding, reflect their valuations. This strategy may be exploited by the seller through a 

second stage of price discrimination where a losing bidder is offered the item at his highest 

failed bid. This is commonly used on eBay, where it is termed the second-chance offer. 

When bidders do not anticipate the second-chance offer, the highest failed bids are bidder 

valuations, and the second stage charges the highest possible acceptable price to the losing 

bidder. On the other hand, if the losing bidder were to obtain the item through another 

auction held by the seller, the bidder would pay a lower price, as, in that auction, he would 

not bid as high as his valuation. 

 

Several variations of the second-chance offer have been studied. In particular, Salmon and 

Wilson [Salmon and Wilson 06] study the problem when the second stage consists of an 

offer that inverts the known symmetric bidder strategy (including one that anticipates the 

second-chance offer). They find that the only existing Nash equilibria for two bidders are 

mixed-strategy equilibria. Joshi et al [Joshi, Sun and Vora 05] find that, when the number 

of bidders is greater than twice the number of available items, equilibria exist such that 

bidders lower their bids in anticipation. These observations lead naturally to the question of 

whether the seller can improve his revenue by randomizing the second-chance offer – that 

is, by not being predictable enough for the bidder to lower his bid substantially. This paper 

addresses a game, similar to the second-chance offer but more general, where the seller 

randomizes the second-chance.  
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A two-stage game is played between n bidders and one seller. In the first stage, all bidders 

enter a sealed-bid, private-value, first-price auction, and one item is sold. After the first 

stage is over, all non-winning bidders enter the second stage for k−1 items identical to the 

one sold in the first stage. In this stage, the seller makes a second chance offer with 

probability α, or a fixed-priced offer, P, with probability 1−α. Bidders accept any offer that 

is not greater than valuation. The dissertation demonstrates that analytic techniques, which 

assume monotonic increasing bidding strategies, do not provide complete solutions to the 

game. That is, standard analytic techniques do not provide the seller and bidder strategies in 

equilibrium. Without the assumption of monotonic increasing strategies, it is not possible to 

present a simple expression for the bidder’s optimization criterion, and the problem is 

essentially one of trying all possible bidder strategies for all possible valuations for the 

other bidders, to determine the optimal bidding strategy in the game. Genetic algorithms 

are hence used to solve the two-stage game model and determine the equilibrium strategies 

for both bidders and sellers. Two-population genetic algorithm (GA) experiments are 

conducted where bidders and sellers form the two populations. When the population 

converges, we have obtained near Nash equilibria.  

 

The results of the GA experiments demonstrate that when the first-price auction is adopted 

in the first stage, and items are scarce —that is, less than or equal to half of the number of 

bidders (k ≤ 4 when n = 8)—optimal bidding strategies are monotonic increasing. 

Otherwise, the strategies are not monotonic increasing. Further, item scarcity motivates 

bidders to bid high, and price discrimination (α = 1) is an optimal seller strategy when 

items are scarce. When the second-price auction is adopted in the first stage, the results 
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indicate that it is optimal for sellers to always price discriminate, regardless of item 

scarcity.  

 

In the following sections, we describe the model and the contributions of this dissertation in 

more detail.  

 

1.2 The Model  

There are n bidders and one seller in the two-stage game. In stage I, all bidders enter an 

auction in which the bidder with the highest bid wins the object at the value of the highest 

bid. In stage II, the seller makes a second chance offer to all non-winning bidders from 

stage I. Each bidder i has a different valuation, xi, which is the highest she is willing to pay; 

we assume each xi is independently and identically uniformly distributed in [0,1]. The goal 

for all bidders is to maximize the expected value of their payoff, which is xi – bi for the 

winning bidder, and zero for all other bidders. The seller’s goal is to maximize the expected 

value of its revenue, which is the value of the winning bid.  

 

Bidders’ valuations may be viewed as their private information. Bids in stage I reveal the 

valuations, and this information is later used against bidders, resulting in a lower payoff. 

Therefore, the second-chance offer is a form of privacy-infringement. Rational bidders 

change their bidding strategy in response to such privacy infringement, by bidding low in 

stage I. [Joshi, Sun and Vora 05], which is not part of this dissertation, shows that the seller 

does not benefit from a deterministic strategy if the bidders know it beforehand, as bidders 

will bid very low in order to make up for the payoff loss of the second-chance offer. Thus 
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there is no incentive for the seller to price discriminate with certainty, and a simple rational 

strategy provides privacy protection to the bidder in such a case. In fact, [Joshi, Sun and 

Vora 05] shows that rational behavior provides very strong protection of the payoff, and is 

preferable to cryptographic protection. It shows that rational bidding by intelligent agents 

without cryptographic protection yields the highest bidder payoff and the lowest total 

revenue for sellers – in comparison to mechanisms where cryptographic protection is used, 

without rational behavior. The intelligent bidding agent also allows bidders with low 

valuation to signal their valuations to the seller, which reduces the opportunity loss for 

sellers’ total revenue.  

 

1.3 Contributions and Findings 

While closed-form solutions exist for several single-stage auctions – among them first and 

second-price sealed-bid auctions – the addition of a second stage that is dependent on the 

first one makes the problem more difficult. This work is the first to examine:  

� a randomized seller strategy in an auction, and its impact on bidder privacy 

� privacy games without explicit closed-form solutions.  

 

The contributions of this dissertation are as follows.  

� It proposes a quantitative model of privacy based on a game-theoretic approach, 

and applies the model to the specific problem of the second-chance offer on eBay.  

� It obtains near-Nash equilibrium results for a general game similar to the second-

chance offer, where the seller’s strategy is randomized. In particular, it obtains 

solutions when the first stage is a first or second price auction.  



www.manaraa.com

 

 7  

� It presents an approach for obtaining solutions when standard Bayesian analysis 

does not provide a solution, and when standard assumptions on the monotonic-

increasing nature of the bidding strategies do not hold. It allows us to obtain pure as 

well as mixed bidding strategies in auctions when analytical approaches do not 

provide solutions.  

� This dissertation applies its results to real data obtained from eBay to demonstrate 

the efficacy of the proposed techniques. The results with real data also demonstrate 

the use of rationality as privacy protection.  

� An automatic bidding tool that determines optimal bidding strategy has also been 

developed.  

 

The results of this dissertation indicate that whether randomized or deterministic strategies 

are optimal for the seller depends on the auction mechanism used, and, when the first-price 

auction is used, also on the scarcity of items ( that is, on the relationship of k and n). When 

the first stage of the game is a first-price auction, we have found that bidders do not 

penalize a privacy-infringing seller as much when fewer items are available and valuations 

are distributed as is standard in theoretical auction models, uniformly in [0, 1]. This is 

because competition among bidders for fewer items motivates the bidder to bid higher. 

Thus, when items are scarce, rational behavior does not provide sufficient privacy 

protection. However, when we examine the case of real valuation distributions estimated 

from eBay data, as well as uniformly distributed between the highest and lowest valuations 

estimated from eBay data, with the second-price auction in stage I, the results indicate that 
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it is always optimal for sellers to price discriminate—that is, use the privacy infringing 

option in stage II. This result holds regardless of item scarcity.  

 

This dissertation is organized as follows: Chapter 2 contains related work, Chapter 3 

presents our model. Chapter 4 presents the Bayesian analysis, and Chapter 5 presents 

genetic algorithm simulations assuming bidder valuations are distributed uniformly. 

Chapter 6 presents results using real eBay data to determine the valuation distribution, and 

the bidding tool implementation. Chapter 7 contains conclusions and directions for future 

research.  
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CHAPTER 2: RELATED WORK 

There are four major research areas that are related to our work. First, our work views 

privacy as a game of information revelation; hence the first area related to our work studies 

how individuals view their privacy, and how dynamic pricing affects their decisions to 

reveal information, because price discrimination can be viewed as a form of privacy 

invasion. This research area explores the economic aspects of personal privacy. We 

describe it in further detail in section 2.1.  

 

Second, our work models privacy as information revelation in a two-stage game that 

includes the first-price or second-price auctions. It is a game of incomplete information, 

and players strategically signal their valuation to maximize payoff. We describe research 

on relevant game-theoretic aspects of auctions and games of incomplete information in 

section 2.2. Third, our work looks at the specific privacy game of the second chance offer. 

We describe work related to the second-chance offer in sections 2.3 and 2.4. In section 2.3, 

we discuss a deterministic model that is similar to our two-stage game. The only difference 

is that, in the deterministic model, sellers’ action to price discriminate in certain. Our two-

stage game can be viewed as a generalization of the deterministic model. In section 2.4, we 

describe research on a randomized strategy for privacy. These two sections explore various 

models that can be considered as variations of our model, which generalizes them. We 

describe various well-known optimization methods in section 2.5, which are typically used 

to obtain optimal strategies.  
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Finally, when examining optimal strategies in our two-stage game of incomplete 

information, we adopt the evolutionary programming method, also called genetic 

algorithms, and conduct experiments to obtain equilibria. The fourth related research area, 

of using genetic algorithms to solve economic problems, as well as some other applications 

of genetic algorithms, are described in section 2.6.  

 

2.1 Personal Privacy and Dynamic Pricing 

There is a great deal of work related to the economic aspects of personal privacy, for 

example, [Laudon 96] [Acquisti, Dingledine and Syverson 03] [Ackerman, Cranor and 

Reagle 99] [Acquisti and Grossklags 04]. Varian [Varian 96] was perhaps the first to 

propose that privacy be treated as an individual’s right to property, where personal data 

forms property. In this framework, private information can be traded, sold or exchanged 

through market mechanisms. Varian also pointed out that once a consumer’s private 

information is sold to a third party, no control is left for the original parties of the 

transaction. Varian concluded that to complete the framework of treating privacy as 

property rights, it is necessary to have legislations to regulate the secondary usage of 

privacy; it must have the consent of the original party.  

 

Acquisti applied psychology and behavioral economics to analyze whether consumers 

make rational decisions regarding their privacy [Acquisti 04]. Acquisti introduces the idea 

of “immediate gratification”− consumers have self-control problems and lean towards 
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obtaining immediate compensation without considering the long-term effect of their 

decisions. Acquisti also noted that the “rational privacy” model, in which the agent is 

assumed to have rationality and unbounded computational power, does not hold because of 

such psychological distortion. Those consumers who claim to value their privacy do not 

demonstrate this in their actions. In conclusion, Acquisti recognized the need to develop 

software tools, policies and government regulations to help consumers to make rational 

decisions regarding their privacy.  

 

In addition, Acquisti and Varian examined whether it is profitable for a firm to perform 

first-degree price discrimination, i.e. condition prices based on purchase history [Acquisti 

and Varian 01]. In their analyses, it is shown that first-degree price discrimination is only 

profitable when there are a large number of uninformed consumers or when a firm can 

provide additional services for different value consumers. Acquisti and Varian classified 

consumers into two types: those with low values, and those with high values. They point 

out that price discrimination is achievable if the seller’s additions are such that either 

consumers do not switch types, or only low value types switch to high value types.  

 

On the topic of dynamic pricing, Odlyzko pointed out that the seller will try to extract 

additional revenue if it is aware of the consumer’s willingness to pay more for the same 

goods [Odlyzko 03]. This happened in the railroad industry in the 19th century, as well as 

on e-commerce site Amazon.com in the 21st century. However, price discrimination 

requires a delicate balance because consumers resent obvious forms of price 

discrimination, while manufactures prefer it to maximize profit. Odlyzko noted that the 
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requirement for balance results in a form of mild, stealthy price discrimination, such as 

product bundles, with the help of tools such as DRM (Digital Rights Management) to 

reduce consumer resentment as much as possible.  

 

Odlyzko’s work points out an important problem: when privacy protection only benefits 

consumers, vendors do not have any incentives to provide such protection. On the other 

hand, if privacy protection also benefits the seller, the seller will be motivated to provide 

the protection.  

 

2.2 Auctions and Strategic Signaling 

An auction is a widely-used pricing mechanism used for the allocation of goods 

[Klemperer 04] [Menezes and Monteiro 05]. McAfee and McMillan have summarized real 

world examples, auction theory development and types of auctions used [McAfee and 

McMillan 87]. There are four types of auctions: the English auction, the Dutch auction, the 

first-price sealed-bid auction and the second-price sealed-bid auction.  

 

In an English auction, buyers continuously raise the price until there is only one buyer left. 

The winner pays the highest current bid. The English auction is also known as the open-cry 

auction because the current bid is always revealed to all participants. In a Dutch auction, 

the seller announces the initial price and keeps lowering the price until one buyer accepts it. 

In a first-price sealed-bid auction, all the bidders simultaneously submit their sealed bids to 

the seller; the highest bidder wins the item and pays its submitted bid. Similarly, in a 
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second-price sealed-bid auction, all the bidders simultaneously submit their sealed beds; the 

highest bidder obtains the item, but pays the second-highest submitted bid.  

 

The second-price sealed-bid auction is also known as the Vickrey auction, and was first 

theoretically analyzed by William Vickrey in 1961. In his attempt to theoretically analyze 

market mechanisms, Vickrey proposed an auction mechanism to sell the item to the highest 

bidder at the value of the second highest bid [Vickrey 61]. Vickrey auctions result in some 

nice properties – for example, the weakly dominant strategy is to bid one’s true valuation, 

because one’s bid only determines whether one loses or wins this auction. This yields an 

expected revenue (for the seller) that is equivalent to that of the English auction, and the 

auction is strategically equivalent to the Dutch auction.   

 

Despite all the nice theoretical properties of Vickrey auctions, Vickrey auctions are used 

only rarely [Rothkopf, Teisberg and Kahn 90] [Lucking-Reiley 00]. Rothkopf observed 

that this is because the bidders fear that, if bid-takers use the information revealed by the 

bids in a future interaction, this could be of disadvantage to the bidder. This observation 

has inspired our work to model information revelation as a multi-stage game, because it is 

realistic for bidders to encounter one another again in practice. Dominant strategies derived 

from one-shot game assumptions do not reflect this valid concern. 

 

McAfee and McMillan noted that a number of variant forms of these four auctions are 

commonly used in the real world, such as while imposing a “reserved price”, charging an 

entry fee, and offering limited time to submit bids, etc. McAfee and McMillan further 
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proved that these four auctions yield identical expected revenue for the seller, i.e. they 

proved the “revenue equivalence theorem”. McAfee and McMillan also included the U.S. 

Treasury bonds auctions as real world examples. Discriminatory auctions and uniform-

priced auctions are both used; however, discriminatory auctions are used to sell relatively 

shorter-term bonds while uniform-priced auctions are used to sell long-term bonds. It is 

also important to note that U.S. Treasury bond auctions are common-value auctions, 

meaning information of the bond value is publicly available.  

 

In another paper, Milgrom compared the four different types of auctions−the English 

auction, the Dutch auction, the first-price sealed bid auction and the second-price sealed bid 

auction−and concluded that the English auction is popular because of the low participating 

costs and the sealed-bid auction has the risk of the seller inserting fake bids to raise the 

final price [Milgrom 89]. . Based on Milgrom’s paper, various cryptographic auction 

schemes with a third party as the auctioneer are proposed.  

 

In addition to auctions, strategic signaling is also relevant to our work. Crawford and Sobel 

proposed one of the first strategic communication models of the sender and receiver game 

[Crawford and Sobel 82]. The sender has private information, m, which is drawn by nature 

and not known to the receiver. The sender sends a costless, non-verifiable message to the 

receiver. The receiver acts according to the message and its action determines the payoff 

for both sender and receiver. This model is also called “cheap talk” because the 

communication is costless. Crawford and Sobel also showed that there is no equilibrium 
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that does not contain a noisy message unless the sender and receiver have identical utility 

functions. In other words, revealing the whole truth is not optimal for the sender if its 

interest differs from that of the receiver. Crawford and Sobel then characterized another 

solution set as “partition equlibria”, where the optimal strategy is to send a noisy message.  

 

The problem we consider– that of finding a balance between consumer privacy and seller 

revenue – is similar to a generalized sender-receiver game, where more than two players 

are involved, with different interests in mind.  

 

2.3 The Deterministic Model 

In [Joshi, Sun and Vora 05], the deterministic version of the two-stage game very similar to 

that described in chapter 3 is studied. In Stage II, the seller either chooses the price-

discrimination offer option with probability one, or has another auction to sell the other 

items. For a seller with identical objects; there are different mechanisms, including the 

second chance offer, that offer various degrees of privacy protection to the bidder. To 

compare the impact of these mechanisms on the bidder, the authors define the privacy cost 

as the payoff difference between different mechanisms for identical items. They present the 

payoff differences among various cases as depicted in Table 2-1:  
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Table 2-1: Payoff Difference Comparison 

Case Zero 

This is the baseline case where all the objects are sold in 

consecutive, independent auctions. The privacy costs of Cases 

B-D are defined wrt this case. 

Case A 

Bids and corresponding identities are all known to the seller. 

After the auction, the seller provides a second chance offer to all 

the bidders that didn’t win the object. Bidders are naïve, and bid 

as though there is no second chance offer. This is expected to 

roughly correspond to current bidding on eBay. 

Case B 
The same as case A except bidders are strategic. This 

corresponds to bidder behavior if rational agents were available.  

Case C 

Only the bids are known to the seller, not the corresponding 

identities. The seller can only contact bidders as a group (and 

hence with a fixed price offer).  

Case D 
The seller only knows the final highest price and can only 

contact bidders as a group with a fixed price offer.  

 

Cases B, C and D represent different kinds of assistance that may be provided a bidder:  

� Case B corresponds to the use of intelligent bidding agents.  

� Case C corresponds to the use of anonymity technology, which destroys any 

link between a bidder and its bid. Though individual bids are known, the 
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bidder corresponding to the bid is anonymous in the set of all bidders 

participating in the auction.  

� Case D corresponds to the use of both: anonymity and bid secrecy technology, 

which does not provide information on losing bids to the seller.  

For the seller, Cases C and D correspond to different levels of information on individual 

bidders and bids:  

� In Case C, the seller can optimize its fixed price offer with the knowledge of 

all the bids.  

� In Case D, the seller can only estimate a best fixed price offer based on an 

assumption of, say, uniformly distributed valuations, and make an offer equal 

to the midpoint of the highest bid.  

 

The authors found that the seller’s total revenue in case C is the same or larger than that in 

case D. Also, case A generates the highest revenue for the seller; and, interestingly, case B 

generates the lowest revenue and highest bidder payoff. That is, the use of intelligent agents 

is more beneficial for bidder privacy protection than the use of cryptography. The authors 

also found that this difference is pronounced for low valuation bidders. This is because 

intelligent agents allow the bidder to signal a low valuation to the seller, while 

cryptographic technology does not provide the option of doing so, and creates an 

opportunity loss when low valuation bidders are not able to signal their inability to buy at 

an average fixed price.  
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The above findings are not the contribution of this dissertation; these are included as related 

work because of their relevance to this dissertation: a generalization of the above game, to 

the two-stage game with probabilistic actions in stage II. While these findings demonstrate 

that it is not beneficial for the seller to price discriminate with certainty if the bidder is 

rational, this dissertation examines the consequences of the randomization of seller 

strategy.    

 

2.4 Randomized Strategies for Privacy  

In a paper that follows the first use of randomization in the second-chance offer, a 

contribution of this dissertation, [Joshi, Sun and Vora 08] examined a multiple-buyer game 

with two stages. In stage one, all buyers submit a sealed-bid in response to a declaration of 

pricing rules by the seller. In stage two, the seller makes a take-it-or-leave-it offer to the 

buyer with the largest signal; this value need not be equal to the signal. The authors show 

that, if the seller breaks the rules and price discriminates with certainty, the buyers reveal 

no information, but that, if the seller breaks the rules with a probability smaller than one, 

buyers reveal information in signals that increase seller revenue. This work does not, 

however, correspond directly to eBay’s second chance offer, where seller’s are only 

allowed to charge a bid in the second stage, and not any other value.  

 

Salmon and Wilson studied a similar game, the English-Ultimatum game, where the first 

stage consists of a first price auction, and the second stage consists of a take-it-or-leave-it 

offer [Salmon and Wilson 06]. The authors showed that there is only a mixed-strategy 
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equilibrium in a 2-item-2-bidder, English-Ultimatum game. The differences between their 

model and ours are as follows:  

1. In the English-Ultimatum game, the seller always chooses to price discriminate in 

the second stage, while our model allows sellers to choose between price 

discrimination and uniform-price offers. 

2. In the second stage, the English-Ultimatum game allows the seller to make an 

offer that is different from the failed bids obtained from stage one, while our 

model does not allow such a change.  

3. Salmon and Wilson examines a mixed strategy for bidders while we examine the 

randomized strategy for sellers.  

4. Our model is for any number of bidders.  

 

The sender-and-receiver game studied first by Crawford and Sobel also addresses informed 

and uninformed players [Crawford and Sobel 82]. The sender is the informed player and 

the receiver is the uninformed player. The game is played as follows: nature chooses the 

sender’s type first, the sender chooses a message and the receiver chooses an action 

afterwards. The payoff of both players is affected by the actions/messages they chose. This 

is different from the problem we address, because, in our problem, bidders are the 

uninformed players and move first. Further, in Crawford and Sobel game, utility function 

of the sender is non-zero if the receiver takes an action that is greater than the sender’s 

secret. In our problem, the utility function is zero if the receiver (seller) takes an action 

(makes an offer) that is greater than the sender’s secret (bidder valuation).   

 



www.manaraa.com

 

 20  

2.5 Optimization Methods 

In this section we discuss some standard optimization techniques that are typically used to 

solve games as well as for other applications.  

 

2.5.1 Deterministic Line Search 

Steepest descent is an old optimization technique that can be applied to continuous and 

differentiable functions. It was first proposed by Cauchy in 1874. It is an iterative process 

to choose a starting point and a neighbor point that the function decreases most quickly 

based on the first derivative [Chong and Zak 96]. Newton-Raphson method is similar to 

steepest descent because it also chooses a starting point and the neighbor point. The 

difference is that the choosing Newton-Raphson method chooses the next point based on 

both the first and second derivatives [Chong and Zak 96]. Line search methods have similar 

flow: (1) initialize a starting point, (2) determine a direction, (3) compute the distance to 

move towards that direction, (4) move to the new target point and check whether it reaches 

optimum, (5) repeat from (1) if it’s not optimum.   

 

Comparing the two methods, it can be observed that steepest descent generally has a more 

rapid convergence in the beginning because it uses first-order derivative, but Newton-

Raphson method has a more rapid convergence at the end of the process. A hybrid method 

can adopt both by implementing the steepest descent at the start and finishing up the 

optimization process with the Newton.  

 

 



www.manaraa.com

 

 21  

2.5.2 Linear, Nonlinear and Quadratic Programming 

Linear, nonlinear and quadratic programming methods are all used to solve constrained 

optimization problems. In all 3 methods, there is an objective function and a set of 

constraints. The goal is to find a solution that maximizes or minimizes the objective 

function and also satisfies the constraints. Linear programming has an objective function 

and a set of constraints that are both linear. Similarly, quadratic programming method has 

an objective function that is quadratic (squared variables) and a set of linear constraints. 

Nonlinear programming is used to solve a nonlinear objective function and a set of 

constraints. If the constraints are linear, it is called “linearly constrained optimization”.  

 

The simplex method is commonly used to solve linear programming problems. It requires 

the set of constraints to be written in matrix form [Chong and Zak 96]. It finds a feasible 

solution by computing the inverse matrix and gradually moves from a feasible solution to 

an optimal solution by finding an adjacent solution with better value (higher if maximizing, 

lower if minimizing) of the objective function.  

 

In a nonlinear programming problem, if the objective function is convex and the set of 

constraints is a convex set, convex optimization method can be used. One of the convex 

optimization methods is based on the Lagrange multiplier theorem. Instead of matrix 

operations, it uses the derivatives of the objective function [Chong and Zak 96]. The 

quadratic programming problem can also be solved by convex optimization method.  
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2.5.3 Random Search 

Simulated Annealing was first proposed by Metropolis et al [Metropolis 53] in 1953. It is a 

method combining deterministic local search and probabilistic moves to reach a global 

optimum; at each point, the process makes a probabilistic decision of whether to stay at the 

current point in the deterministic search algorithm, or to move to another point. This 

prevents deterministic search algorithms, such as steepest descent, from getting ``stuck’’ in 

local optima. Genetic algorithms are also categorized as optimization techniques based on 

random search, and mimic how nature is believed to reach equilibria. We describe the 

genetic algorithm in detail in the next section.  

 

2.6 The Genetic Algorithm  

The genetic algorithm was first introduced by Holland and Goldberg [Holland 75] [Holland 

92] [Goldberg 88]. It is based on Darwinian natural evolution theory: the growth of animals 

is mainly controlled by their genes, inherited from their parents. Instead of reproducing the 

same genes from one single source, the genes are actually a mix of those of both parents, 

with possible random changes, known as mutation.  

 

Adopting the biological model of evolution, solutions in genetic algorithms are coded as 

chromosomes. Similar to the notion of the survival of the fittest in Darwinian theory, a 

fitness function determines survival in genetic algorithms. This could be an objective 

function or a subjective function defined by human decisions. Genetic algorithms are 

iterative algorithms, and possible solutions are iteratively selected or rejected based on their 

fitness. Beginning with a first set of possible solutions, pairs of accepted solutions generate 
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solutions for the next iteration, using crossover and mutation. This process is repeated until 

good enough chromosomes are created, or time runs out.  

 

Selection is crucial in the genetic algorithm because it decides how to obtain more copies 

from the better solutions. There are several different ways of performing selection: roulette 

wheel selection, tournament selection and truncation selection. Chromosomes with higher 

fitness scores will have a higher percentage in the roulette wheel selection. In the 

tournament selection, the algorithm will randomly pick any two (or more) chromosomes, 

compare fitness scores, and keep the best one. The truncation method is the most trivial 

one; it doubles the better half population and truncates the other half. 

 

The cross over function mimics the biological reproduction process. It combines bits from 

good parents generated by the previous selection function. There are two methods for cross 

over: one point cross over and two points cross over. For a one-point crossover, the 

algorithm first randomly picks a point in the bit strings. All bits before that point are from 

one parent and all bits after that point are from the other parent. Two point cross over 

works similarly.  

 

Mutation provides variation that is needed in the genetic algorithm to prevent it from being 

limited by its first (randomly chosen) set of solutions. One bit in the chromosome bit string 

is randomly flipped. Mutation can also be viewed as a random walk away from the original 

chromosome. Because mutation causes variation, global optimization can be achieved. 
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There are other algorithms adopted from the power of nature, such as observing how ants 

alter their path to build the shortest path finding algorithm [Dorigo 92]. 

 

In our model, the genetic algorithm scheme is used to find Bayesian-Nash equilibria among 

sellers and bidders in a multi-stage game of incomplete information. From an evolutionary 

game theory point of view, the survived strategies result in mutual best responses for all the 

players because the strategies with lower utility are eliminated during the evolving process; 

therefore, the Bayesian-Nash equilibria obtained from our experiments are also 

evolutionary-stable.  

 

2.7 Applications of Genetic Algorithms to Problems in Economics  

There have been several applications of genetic algorithms to the solution of economic 

problems. One application is mechanism design and evaluation. Cliff adopted the genetic 

algorithm approach to investigate an optimal mechanism for an online auction trading 

environment [Cliff 03] [Cliff 06] [Walia, Byde and Cliff 03]. Cliff discovered a hybrid 

auction market evolving in his experiments, and noted that software agents can be used in 

online auctions, and that current human-developed auctions are not necessarily optimal. . 

The hybrid auction market that evolved in his experiments is much more market efficient, 

and results in more overall market profit than any human-designed auction mechanisms. 

Similarly, Byde adopted genetic algorithms to evaluate various auctions including first-

price and second-price sealed-bid auctions [Byde 03], and demonstrated the evolution of a 

hybrid mechanism. It is important to note that Byde established that the GA-based solution 

is optimal regardless of whether it is a human-trading market or an agent-based trading 
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market. Byde also noted that the advantage of the genetic-algorithm-based approach is that 

not-theoretically-analyzable factors can be taken into consideration during the simulation 

process through the use of evolution. Similar to our approach, Byde used a 1-to-1 mapping 

table to represent the bidding strategy where the entry of the table is the bidders’ valuation, 

and the outcome of the lookup table is the bid.  

 

Genetic algorithms have also been applied to well-established problems in economics, such 

as the prisoner’s dilemma, auctions, the cobweb model and other microeconomic problems 

[Riechmann 01] [Dawid 96] [Dawid 99]. In the prisoner’s dilemma, defection is the 

dominant strategy if the game is only played once. Alexrod studied the iterated prisoner’s 

dilemma (IPD) game with genetic algorithms [Alexrod 87]. In his experiments, each player 

has a chromosome consisting of three previous moves: a player chooses either cooperation 

or defection and there are four possible outcomes for each move. It is shown that the 

optimal strategies that evolved from the experiments have similar properties as TIT FOR 

TAT [Alexrod 84], a strategy submitted by Anatol Rapoport in a previous IPD strategy 

contest. Axelrod concluded that the genetic algorithm is an effective optimization technique 

in a large problem space. 

 

Andreoni and Miller conducted genetic algorithm experiments to explain the anomaly of 

human auctions [Andreoni and Miller 95]. The bidders gradually learn the optimal strategy 

by evolving. Andreoni and Miller examined the evolved strategies in common value 

auctions, affiliated private value auctions and independent private value auctions over a 

period of 1,000 generations. Each generation consists of twenty rounds of auctions and the 
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fitness function is defined as the total profit over twenty rounds. Andreoni and Miller also 

examined experiments with settings of 8 bidders and 4 bidders. Andreoni and Miller 

concluded that bidders in the experiments did reach Nash equilibrium in the common 

value, first price auctions. Andreoni and Miller noted it is relatively difficult to converge to 

equilibrium in auctions because of poor feedback in the auction environment.  

 

The cobweb model is mostly used to describe the supply and demand equilibrium in 

agricultural market. Different from other markets, it takes a significant period of time for 

crops to grow; therefore farmers need to estimate the quantity they need to plant based on 

their forecast of the market price [Pindyck and Rubinfeld 04]. The cobweb theorem states 

that the market price will converge to the intersection of the supply-demand curves, the 

equilibrium, after a long period of time. Genetic algorithms have been adopted to conduct 

several simulations for different cobweb designs [Arifovic 94] [Franke 98] [Dwaid and 

Kopel 98]. Arifovic showed that the genetic algorithm can be used as a decision making 

and learning tool to achieve equilibrium price. Arifovic also noted that a GA-based 

approach does not require the agents to be intelligent to begin with; instead, an agent can 

keep updating its prior beliefs during the process to produce optimal solutions.  

 

Dawid and Kopel also adopted a genetic algorithm approach to study two cobweb models. 

In one model the farmer (or firm) decides whether to stay in the market or exit before 

deciding the production quantity; while in the other model, the firm can only make 

decisions about production quantity [Dawid and Kopel 98]. Dawid and Kopel conducted 

simulations with different coding schemes and different designs of fitness functions, and 
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discovered, surprisingly, a different result for each coding scheme. While such a finding 

indicates that the results cannot be generalized, Dawid and Kopel noted that the genetic 

algorithm approach is still useful to analyze economic problems because it always initiates 

a heterogeneous population to begin further simulations. A heterogeneous population 

represents asymmetric strategies. This is a major advantage over theoretical analysis 

because it allows us to examine more complex problems with less constraints and 

assumptions, for example, we do not need to assume symmetric strategies for all players in 

a game.  

 

In summary, we described four related work areas: economic aspects of personal privacy 

and their relationship with price discrimination; the independent auction literature as a one-

shot game and strategic signaling in another multi-stage game; different models that can be 

viewed as variation of ours; and well-known optimization methods, as well as applications 

of evolutionary programming, a method we use. All four areas are closely related to 

different aspects of our model described in Chapter 3. 
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CHAPTER 3: THE MODEL 

We model a two stage price discrimination game—an auction stage followed by a seller-

offering stage—as follows.  

 

Game Price Discrimination  

− Stage I: N bidders join a sealed-bid auction. All bidders simultaneously and 

independently make bids. The bidder with the highest bid wins the auction. On the 

occurrence of a tie, the winner is chosen at random. The remaining N-1 bidders enter 

Stage II. 

− Stage II: The seller offers an identical item to all the remaining bidders:  

(1) The failed bid (privacy-infringing) option: With probability α, the price is the 

bidder’s highest bid in Stage I.  

(2) The uniform price(privacy-protecting) option With probability 1-α, the price is a 

uniform price P for all bidders. The bidders can reject or accept either offer.  

 

Each bidder’s payoff is calculated as the difference between the price paid for the item and 

the bidder’s valuation. In this two-stage game, bidders are seeking to maximize their payoff 

and sellers are seeking to maximize their total revenue over stages. There are two different 

auction mechanisms used in Stage I: first-price sealed-bid and second-price sealed-bid, 

these are described in detail in section 3.2.  
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3.1 Notation 

We follow the notation of Krishna [Krishna 02] and denote the private valuation by x, the 

bid by b, the payoff by Π, and the expectation operator by E[.] . β(x) is the optimal bidding 

function. G(x) denotes the probability that a given valuation x is the highest among n 

bidders; g(x) denotes its derivative. H(x) denotes the probability that a given valuation x is 

among the highest k ones, but is not the highest; h(x) denotes its derivative. P denotes the 

uniform-price offer made in Stage II, and R the revenue. xi and bi denote the ith highest 

valuations and bids respectively.   

 

3.2 Stage I   

Stage I may be a first or second price sealed-bid auction.  

3.2.1 First-Price Sealed Bid Auction 

In Stage I, if a first-price sealed bid auction is adopted, the winner pays its bid. A bidder’s 

expected payoff is written as  

)])(1()()[())((][ PxbxxHbxxGE −−+−+−=∏ αα  

 

3.2.2 Second-Price Sealed Bid Auction 

In Stage I, if a second-price sealed-bid auction is used, the winner pays the second highest 

bid. A bidder’s expected payoff is written as  
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where G(x) denotes the probability that a given valuation x is the highest valuation among n 

bidders, 
)(

)(
0

xG

dyybg
x

∫
denotes the expected value of the second highest bidder’s bid, and H(x) 

denotes the probability that a given valuation x is among the highest k valuations, but not 

the highest. If the number of available items is less than the number of remaining bidders 

and the seller chooses to price discriminate, only the highest k-1 bidders receive an offer, 

where k-1 is the number of available items. If the seller chooses otherwise, the seller 

provides the uniform-price offer to all n-1 bidders, bidders then notify the seller whether 

the offer is rejected or accepted. The seller randomly selects k-1 bidders among those who 

accept the uniform-price offer.  

 

3.3 Assumptions   

We make the following assumptions:  

1. x is independent and identically distributed with a uniform distribution over interval 

[0, 1] , with cumulative distribution function F, and the corresponding probability 

distribution function f. Hence,  
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2. β(x) is monotonic-increasing and identical for all bidders 

3. Bidders are risk-neutral.  
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4. Bidders reject any offer exceeding valuation 

 

3.4 Impact of Stages on Revenue and Payoff   

3.4.1 Independent Second-Price Auction   

In our model, the second-price auction can be adopted at the first stage in a two-stage 

game. The optimal strategy of the bidder in an independent second-price auction is well-

known to be a “truth-revealing” strategy. It is a dominant strategy for the bidder to always 

bid its valuation; that is, the bidder cannot make a better payoff with another bidding 

strategy, independent of the strategies of other bidders. We briefly describe the reasons for 

this strategy.   

 

Suppose, instead of submitting a bid x, the bidder submits bid b such that:  

1. b > x:  

a. If the highest bid among other bidders, b’, is such that b’>  b, both bids of b 

and x result in the same payoff: zero, as the bidder does not win the auction 

with either strategy.  

b. If b’< x, both b and x are the highest bids, the bidder wins with either bid, 

and makes the same payoff x-b’ independent of the value of b.  

c. If b > b’> x the bidder wins the auction in a situation where he would not 

have won with bid x. However, in this case, the bidder cannot afford the 

item, priced at b’, and makes a zero payoff.  

2. b < x:  
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a. If the highest bid among other bidders, b’, is such that b’>  x, both bids of b 

and x result in the same payoff: zero, as the bidder does not win the auction 

with either strategy.  

b. If b’< b, both b and x are the highest bids, the bidder wins with either bid, 

and makes the same payoff x-b’ independent of the value of b.  

c. If x > b’> b the bidder loses the auction with bid b and makes zero payoff. 

With bid x, the auction would have been won, with a non-zero payoff x-b’ 

The objective function for the independent second-price auction is x-b2 for the bidder who 

wins, and zero for all other bidders. In an independent second-price auction, the seller’s 

action is fixed a priori, and the seller does not have an optimization criterion.  

 

3.4.2 Independent First-Price Auction   

In our model, the first-price auction can also be adopted at the first stage in a two-stage 

game. The optimal strategy of the bidder will depend on the nature of the second stage, and 

will, in general, be different from that of the first-price auction played as an independent 

game. For the purposes of comparison, and to determine if the seller benefits from the 

second stage, we present a brief overview of the well-known results about first-price 

auctions played as independent games.  

 

The first-price auction when played as an independent game does not posses a dominant 

strategy; its symmetric Nash equilibrium bidding strategy is well known to be the expected 

value of the second-highest valuation, conditional to x being the highest one: 
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This optimal strategy is obtained by differentiating the expected payoff with respect to the 

bid, and then assuming all bidding strategies are identical (for a symmetric equilibrium) 

and then setting the derivative to zero to determine an extreme value of the payoff. Finally, 

it is shown that, if all other bidders bid according to this strategy, and a single bidder 

deviates, the deviating bidder obtains a smaller payoff than it would if it were to follow the 

strategy.  

 

When f(x) is the uniform distribution,  
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The objective function for the bidder in an independent first-price auction is 

))())((( 1 xxbG ββ −− . 
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3.4.3 Two Stage Model    

We further analyze the objective functions for both the seller and the bidder in a two stage 

game. The seller’s goal is always to optimize its total revenue; if Stage I is the first-price 

sealed-bid auction, the seller’s objective function can be written as:   

),...,,,,( 21 nxxxPR βα = ∑∑
>=

−++
k

Px

k

i
i Pbb )1(

2
1 αα  

 
where bi = β(xi). If the second-price sealed-bid auction is adopted for Stage I, the seller’s 

objective function can be written as:  
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For the bidder, if the first-price sealed-bid auction is adopted in Stage I, payoff can be 

written as:  
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If the second-price sealed-bid auction is adopted at Stage I, bidder payoff can be written as:  
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To obtain the average payoff, we can sum up the payoff function over all possible 

combinations of xi, bi. In summary, the bidder’s objective function can be written as: 
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And the seller’s objective function can be written as:  
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To find the Nash equilibrium, we have to optimize the bidder’s objective function 

∑
),...,(

21

21

),...,,,,(
nxxxpossibleall

nxxxPQ βα  given ),( Pα  because the bidder does not have knowledge 

of the seller’s move ),( Pα  while submitting the bid. We also have to optimize the 

objective function ∑
)21 ,...,(

21 ),...,,,,(
nxxxpossibleall

nxxxPR βα  given β  for the seller because the bids 

are submitted based on the bidder’s estimate of the seller’s move.  
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CHAPTER 4: BAYESIAN ANALYSIS 

In this chapter we present the Bayesian analysis performed by us to obtain the optimal 

bidding strategy in some cases. We also present the results of genetic programming 

simulations to solve for the Bayesian Nash equilibria. Before we provide our results, we 

first review the independent first-price auction.  

 

4.1 Bayesian Nash Equilibrium—First-Price Auction at Stage I 

This dissertation examines the following two cases when the first-price auction is adopted 

at the first stage:  

Case I: α and P represent the reputation of the seller and are known to the bidder. k 

identical items are available.  

Case II: α and P form the seller’s second-mover strategy and are unknown to the 

bidder. k identical items are available  

4.1.1 Case I  

Consider a simplified version of the game, where the bidder knows the sellers’ values of 

the probability α and the uniform price P prior to the start of the auction. This may be 

thought of as a steady state setting in a repeated game, where the seller has chosen optimal 

values of α and P, and the bidder has learnt them over repeated interactions. α and P 

represent the reputation of the seller, and we may consider them as representing the 

distribution on the type of the seller. Just as the distribution on the bidder’s valuation is 

known to the seller, so also the parameter α is known to the bidder, along with P. The 
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bidders submit bids in the first stage, and, after the auction ends, the system flips a coin, 

biased according to the value of α, to choose between the uniform price option and the 

failed bid option. The result of the coin flip may be viewed as the type of the seller – much 

as the valuation x represents the type of the bidder – and is similarly unknown, a priori, to 

the other players. 

 

Theorem 1: There is no dominant deterministic strategy for all bidders in the Game Price 

Discrimination when the first-price auction is adopted at the first stage.  

Proof: Consider the strategy of bidding zero. It is a strongly dominant strategy (that is, its 

payoff is strictly greater than that of any other strategy) for non-highest-bid bidders who do 

not win Stage I, as the payoff is strictly greater than any other if the seller price 

discriminates in Stage II, and the payoff is the same as any non-zero bid if the seller offers 

a uniform-price instead. However, for the highest bidder, if all other bids are small enough 

(what is small enough depends on α and P), a greater payoff is obtained by bidding higher 

than all other bids and winning Stage I rather than bidding zero and risking paying P in 

Stage II. This is not as good as bidding zero for the non-highest bidders. Therefore, there is 

no dominant deterministic strategy for the bidder.  

 

Assuming the bidder uses a symmetric Bayesian Nash equilibrium strategy, following 

Krishna’s notation [Krishna 02], for bidders with valuation higher than P, the expected 

payoff for bid b and valuation x is as follows: 
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H(x) is the probability for valuation x to be among the k highest ones but not the highest 

one. Otherwise, if valuation x is less than fixed price P, the expected payoff is  

)]())[(()))(((][ 11 bxbHbxbGE −+−=∏ −− αββ  

Differentiating both equations wrt b, and equating to zero gives the following optimal 

bidding strategies as equation (1). See appendix A for detailed steps and a proof that shows 

it is a symmetric Nash equilibrium strategy.  

 

Theorem 2:  
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is a Bayesian Nash equilibrium for Game Price Discrimination if G(x) + αH(x) ≠0, β(x)> 0 

and monotonic increasing. Proof: See appendix A.  

 

However, β(x) is not always monotonic increasing for all α and P. When β(x) is not 

monotonic increasing, it contradicts assumption (2) from section 3.3 and is not an invertible 

strategy. Therefore, determining the Bayesian strategy by differentiating the expected 
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payoff function does not provide a solution for β(x). We cannot use it to compute the 

revenue for each value of α and P to determine the optimal α and P for the seller. We hence 

need an alternate approach to determine the equilibrium seller strategy, and the 

corresponding bidder strategy. In particular, we need an approach that does not require the 

bidding strategy to be monotonic increasing.  

 

4.1.2 Case II 

In a less constrained situation, the two-stage game would be played sequentially, with the 

seller moving later than the bidders. That is, the seller would determine the values of α and 

P after receiving all the submitted bids. Further, again, the bidding strategy need not be 

monotonic increasing.  

 

As closed form expressions for the payoff for arbitrary (non-monotonic increasing) 

strategies do not exist, we use genetic algorithm simulations to examine arbitrary bidding 

strategies. Based on the analysis of objective functions in section 3.4.3, we can see that the 

two objective functions for bidders and sellers depend on each other. The optimization 

methods we studied in chapter 2 including deterministic search, linear programming and 

quadratic programming do not provide a good fit for such problems. The next class of 

optimization techniques is heuristic search method including neural network, simulated 

annealing and genetic algorithms. We choose genetic algorithms and map bidders and 

sellers to two populations that evolve together. The bidding strategy is not assumed to be 

monotonic increasing. It is assumed that 0 ≤ β(x) ≤ x. Because β is not necessarily 

monotonic increasing, it is possible that a bidder with a lower bid might be able to pay the 
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fixed-price for the object while a bidder with a higher bid might not. Hence the fixed-price 

offer in Stage II, made with probability 1−α, is made not only to the k−1 highest bidders, 

but to all bidders. A random k−1 are chosen from all bidders who accept the fixed price 

offer. The solution space of player strategies is expected to be large, as the bidding strategy 

is not constrained to a particular form.  

 

When bidding strategies are not monotonic increasing, there is no straightforward formula 

for the probability of winning, as it is not straightforward to characterize the distribution of 

the other bids; hence, for example, the probability of winning with bid b is not ))(( 1 bG −β  

as in section 3.4.2 This further implies that the only formula for expressing the expected 

payoff is to provide an average over all possible valuations of the other bidders: 
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We use genetic algorithm (GA) experiments to perform a search over the large solution 

space. In the GA experiments, the bidder’s fitness function is payoff, and the seller’s fitness 

function is revenue. The bidder’s chromosomes define its strategy β, unconstrained except 

0 ≤ β(x) ≤ x. Using the GA experiments, the optimal strategies, for bidder and seller, are 
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obtained when the chromosomes converge. Our approach and the experimental results are 

described in next section and chapter 5.  

 

4.2 Evolutionary Programming to Determine Bayesian Nash Equilibrium 

We first examine the case of no scarcity (n = k) where bidders follow the Bayesian strategy 

in equation (1). In this case, the number of bidders is the same as the number of available 

items.  

 

4.2.1 Case I: n = k 

First, for the purposes of illustration, consider Case I: when bidders known the values of α 

and P and n = k. Bidders’ Bayesian strategy becomes equation (2) as in this case, H(x) = 1-

G(x), because 1-G(x) is the probability of that a bidder with valuation is among the highest 

k, n = k, bidders but not the highest one. It is a special case of (1). When α≠1,   
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When α = 0, bidders with valuations less than P can never obtain the item in the second 

stage. Low valuation bidders see the first stage as a simple first-price auction. On the other 

hand, bidders with valuations greater than P will never bid more than P in the first stage 
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because they are guaranteed to be able to afford the price in Stage II. Given this response, it 

appears best for the seller to divide the bidders into two sets of roughly equal size, using 

P=0.5 (as valuations are uniformly distributed), and to never price discriminate. This is 

confirmed in figure 4-1.  

 

Figure 4-1: Seller’s revenue as a function of α and P 

Figure 4-1 shows the expected revenue computed from equation (2) as a function of α and 

P. The computation assumes uniformly distributed valuations, n = 20 bidders, and averages 

over 10 instances. It is clear that α = 0 and P = 0.5 provide the optimal seller reputation, 

that is, the reputation at which the seller obtains the highest expected revenue. Note that α 

= 0 and P = 0.5 provides a higher revenue than α = 0 and P = 1, which provides the 

revenue of a simple first-price auction. This difference in revenue is largely due to the fact 

that P = 0.5 sells more items. 
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4.2.2 Case II: n = k 

We now consider the case when the bidders do not know the values of α and P, but learn 

them in an evolutionary program, by estimating their values, and bidding according to the 

estimates. Good estimates will be passed on to the next generation. The sellers, 

simultaneously, through evolution, determine a best value of these parameters. In the 

experiment, the chromosomes represent the bidder’s estimates of α and P for the fitness 

function expected payoff, and the seller’s values of α and P for the fitness function expected 

revenue. The bidder’s chromosome is coded as a pair of real numbers α and P. It represents 

the bidder’s type, i.e. the bidder’s assumed values of price discrimination probability α, and 

the uniform price P. The seller’s chromosome is also coded as a pair of real numbers α and 

P. It represents the seller’s action after Stage I ends.  

 

We stop our simulation when the number of generations is 10,000. The initial population is 

set at 100 sellers, and 100 distinct bidders for each seller. Bidder chromosomes are 

randomly generated at the beginning of the simulation. Bidder valuations are randomly 

generated each generation. The tournament selection method is used for reproduction: two 

chromosomes will be randomly drawn from the population pool. The chromosome with the 

higher fitness score will be copied to the new population representing the next generation. 

It will stay in the pool for further tournaments, and the process continues until the new 

population has the same size as the previous one. The crossover process combines 

chromosomes from two parents, at random. The optimal mutation rate is set to be equal to 
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1/4 as suggested in [Mühlenbein and Schlierkamp-Voosen 93] because there are 4 different 

variables in the seller and bidder chromosomes. We implement the mutation operator 

suggested in [Mühlenbein and Schlierkamp-Voosen 93].  

 

In the experiment, we divide the bidders into two groups: low valuation bidders and high 

valuation bidders. Group one contains bidders with low valuations, that is, valuations 

uniformly distributed between 0 and 0.5; group two contains bidders with high valuations, 

that is, valuations uniformly distributed between 0.5 and 1. The mutation rate is 1/4 from 

generation 0~5000 and 0.05*(1/4) afterwards. Bidders are assigned a randomly generated 

valuation every generation according to their group.  

 

Table 4-1: Experiment Results 

 Experiment: 100 Bidders 

Mean Variance 

Sellers’ α 0.0 0.0 

Seller’s P 0.5101 1.5660e-008 

Low Valuation Bidder’s α 0.4297 0.1188 

Low Valuation Bidder’s P 0.4434 0.1125 

High Valuation Bidder’s α 0.5866 0.1096 

High Valuation Bidder’s P 0.4155 0.1273 
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We find that the population of the seller’s chromosome is converged. However, neither the 

low valuation bidders’ nor the high valuation bidders’ chromosomes are converged to any 

distinct pairs of (α, P). Table 4-1 summarizes the results of this experiment.  

 

Figures 4-2 and 4-3 illustrate the bid distributions for high valuation bidders and low 

valuation bidders. The high valuation bidders’ bids clearly converge to approximately zero. 

The low valuation bidders’ population enters a stable stage since no significant change in 

population variance is found over generations. The only explanation for this result is that 

two Nash equilibria exist in this two stage game. One is to bid zero and one is to bid their 

valuation. The reasons why P and α do not converge are as follows:  

� For high valuation bidders: although the bids converge to nearly 0, it appears that 

many combinations of α and P can result in nearly-zero bids. 

� For low valuation bidders: because there are two Nash equilibria, α and P do not 

converge.  
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Figure 4-2: Distribution of High Valuation Bidder’s Bids 

 

Figure 4-3. Distribution of Low Valuation Bidder’s Bids 
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4.3 Bayesian Nash Equilibrium—Second-Price Auction at Stage I 

This dissertation also examines the following two cases when second-price auction is 

adopted at the first stage: α and P represent the reputation of the seller and are known to the 

bidder. k identical items are available.  

 

Similar to section 4.3, we consider a simplified version of the game, where the bidder 

knows the sellers’ values of the probability α and the uniform price P prior to the start of 

the auction. The only difference is a second-price auction is adopted at Stage I.  

 

Theorem 3: There is no dominant deterministic strategy for all bidders in the Game Price 

Discrimination when second-price auction is adopted at the first stage.  

Proof: From section 3.4.1, we know that the dominant strategy to win a second-price 

auction is to bid up to one’s true valuation. However, the dominant strategy for stage I 

results in the worst case at stage II when a second chance offer is made—with zero payoff. 

If the uniform-price is offered at stage II, the payoff is the same regardless of the bid. We 

can see that if a uniform-price offer is made at stage II, it is best to bid up to one’s valuation 

at stage I to win the auction, if one’s valuation is below P which depends on how the seller 

moves. However, bidding up to one’s valuation does not result in an optimal outcome if a 

second-chance offer is made at stage II. Therefore, there is no dominant deterministic 

strategy exist for this game.  
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Assuming the bidder uses a symmetric Bayesian Nash equilibrium strategy, following 

Krishna’s notation [Krishna 02], for bidders with valuation higher than P, the expected 

payoff for bid b and valuation x is as follows: 
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H(x) is the probability for valuation x to be among the k highest ones but not the highest 

one. Otherwise, if valuation x is less than fixed price P, the expected payoff is  
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Differentiating both equations wrt b, and equating to zero results in partial differentiation 

equations from which we are not able to obtain an optimal strategy for general k. See 

appendix B for detailed steps and solutions for specific n and k.  

 

Due to the difficulty of obtaining optimal strategies through solving partial differentiation 

equations, we conduct genetic algorithm experiments and the results are described in 

Chapter 5. It is worth noting that genetic algorithms have shown success in solving partial 

differentiation equations as mentioned in [Haupt and Haupt 04]. The genetic algorithm 

experiments include the case where this game is played sequentially, as well as the 

situation of item scarcity.  
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4.4 Summary 

We have derived the conditions for injective non-negative strategies in Bayesian Nash 

equilibria for a two-stage price discrimination game when the first-price auction is adopted 

at stage I. In the absence of item scarcity, we find that rational behavior, even when the 

seller’s strategy is randomized between price discrimination and fixed-price, provides 

benefit to the bidder and is sufficient for privacy protection, as it deters the seller from price 

discriminating.  

 

In the next chapter, we examine item scarcity. We also examine the cases when the 

conditions under which we have determined the Bayesian Nash equilibria (injective, non-

negative bidding strategies) are not obtained in the results; i.e. when the analytical 

approach does not obtain the equilibria, and there is no closed-form solution for it. In order 

to consider both cases, when the equilibria are characterized by closed-form solutions and 

when they are not, we characterize the bidders through their bidding strategies expressed as 

look-up tables, and not through their beliefs about α and P, (because even if they had 

correctly estimated α and P they would not have a closed-form bidding strategy).  
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CHAPTER 5: EVOLUTIONARY PROGRAMMING EXPERIMENTS 

This chapter presents the detailed process and the results of the evolutionary programming 

experiments. Each experiment has various small values of n and k. Experiment set A 

adopted the first-price auction at stage I, and a uniform distribution of bidder valuations; for 

some values of n and k, results for this problem were also obtained through Bayesian 

analysis and are were described in Chapter 4. Due to the possible mixed strategies found in 

experiment A, we further conduct experiment B with most general chromosomal 

representation and uniform distribution to solve the game with the first-price auction in 

stage I. Finally, experiment set C adopted the second-price auction in Stage II (as would be 

the case on eBay), and used both uniformly distributed valuations, as well as valuations 

obtained from a real eBay dataset. Detailed results of experiment C are described in chapter 

6.   

 

5.1 Simulation Method 

The fitness functions are expected payoff and expected revenue for bidder and seller 

respectively. The seller’s chromosome consists of the values of α and P. In experiment set 

A, the bidder’s chromosome is coded as a twenty-entry lookup table to represent a pure 

bidding strategy. The bidder’s valuation is the index of the lookup table, and the bid is the 

content of the corresponding entry. In experiment set B, the bidder’s chromosome is coded 

as two twenty-entry look up tables, and a probability γ for the first lookup table. The form 

of this chromosome is designed to represent a mixed strategy—with probability γ, the bid 

comes from the first lookup table, otherwise it comes from the second lookup table. In 
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experiment set C, the bidder’s chromosome is an m by m matrix. The (i,j) th element in the 

matrix represents the probability that the bid for valuation i will be the value j. Notice that 

the chromosome of experiment A is a special case of that of experiment C, and that of 

experiment C is a special case of that of experiment B.  

 

5.2 Basic Steps 

The stop condition is number of generations equals to 10,000 for experiment set A, and 

5000 for experiment set B and C, which have finer chromosomal representations, and 

hence are expected to converge in fewer generations. The population is fixed across all 

experiments to 500 sellers, and n = 8 distinct bidders for each seller. Bidder chromosomes 

are randomly generated at the beginning of the simulation. Bidder valuations are randomly 

generated each generation. 1000 auctions are conducted during each generation for all 

three experiment sets. Because there is almost no literature on how to determine bidding 

functions that are not parameterized simple functional forms (such as linear or quadratic), 

we determined this number through several preliminary experiments, these are described in 

section 5.4.  

 

The optimal mutation rate for experiment set A is set to be equal to 1/22 as suggested in 

[Mühlenbein and Schlierkamp-Voosen 93] because there are 22 different variables in the 

sellers and bidders chromosomes. We also implement the mutation operator suggested in 

[Mühlenbein and Schlierkamp-Voosen 93] as follows:  
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where i is the iteration number. A variable iVar  of the chromosome (each bidder 

chromosome contains 20 variables; each seller chromosome, two) is selected with 

probability r=1/22 to mutate. For every variable, we flip a bias coin, with probability 1/22, 

the variable mutates1. For experiment B, the mutation rate is set to be 1/42 and )2/(12 +m  

for experiment C (recall that the number of bidder variables for experiment B is 40 and that 

of C is m2). If the variable is not selected to mutate, its value does not change. Otherwise, 

the new variable Mut
iVar  is computed by adding or subtracting a small value ii ra ⋅ . 

Addition or subtraction is randomly chosen with probability 0.5. ir  is set to be 0.1*(1-0) 

because the range of bidders’ chromosomes and sellers’ chromosomes are all between 0 

and 1, and the mutation range is fixed to be 10% of this range [Mühlenbein and 

Schlierkamp-Voosen 93] 2. ia  is computed with the equation ∑ −=
k

k
i ua 2 , where u is 

initially 0 and is randomly chosen to be 1 with probability 1/k and the suggested k value is 

16. On average, there will only be one u with value 1, which makes i
ia −= 2 and this will 

                                                 
1 The mutation rate is set to be 1/number of variables. In our experiments, bidders have a lookup table with 20 entries and 

each entry is treated as an independent variable. Sellers have 2 chromosomes, α and P; therefore, there are 22 variables in 

total and the mutation rate is set to be 1/22. 

2 Bidders’ chromosomes contain variables representing bids between 0 and 1; sellers’ chromosomes include probability of his 

action, α, which is between 0 and1, and the uniform-price offer, P, which is also between 0 and 1.  
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be the addition or subtraction to the original chromosomes [Mühlenbein and Schlierkamp-

Voosen 93].  

 

5.3 Detailed Steps 

After the population is initialized, each bidder submits a bid according to its bidding 

function composite of a lookup table. Notice that, if the bidder’s assumptions about the 

seller’s values of α and P are correct, and the bidder can determine a best response to these 

values, this is indeed an optimal bid. The seller’s fitness score is the total revenue over both 

stages, while that of the bidder is the individual payoff after both stages.  

 

The bidder’s payoff is calculated as the difference between its purchasing price — either its 

submitted bid at stage I or a fixed price offer — and its valuation. If the seller offers a fixed 

price higher than the bidder’s valuation, the offer is rejected, and does not contribute to the 

seller’s revenue, and the bidder’s payoff is zero. Because the fitness function takes inputs 

from the chromosomes of both sellers and bidders, sellers and bidders can be viewed as 

two species that affect each other while evolving over generations. Figure 5-1 illustrates the 

detailed steps in one generation for experiment set A. Seven different experiments are 

conducted. For experiment B and C, the detailed steps are the same except for the 

chromosome encoding and the bidder valuation distribution.  

As illustrated in figure 5-1, the number of generation differs for different experiments. For 

experiment set A, y = 10,000; for experiment set B, y = 4,000; for experiment C, y = 

5,000.  
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Figure 5-1: Detailed Process of Evolutionary Programming Experiments 
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5.4 Experiment Set A: Preliminary Results 

This section describes preliminary experiments to determine some parameters that are used 

in later, more extensive experiments. We conduct an experiment of the independent first 

price auction, for which the Nash equilibrium strategy is well-known, and can be 

theoretically derived (see section 4.1). We explore−with 2, 4 and 8 bidders−whether 

evolutionary programming simulations can result in the correct equilibrium strategy. We 

choose 500 sellers, and 100 auctions per generation. Figure 5.2 compares the theoretical 

equilibrium strategy and the bidder chromosome obtained from experiments for 2 bidders. 

It shows that the experiments do provide correct results, but that these results contain some 

“noise”. Results for 4 bidders and 8 bidders also provide similar, ``noisy’’ results. We 

expect that some of the noise can be eliminated with an increase in the number of auctions 

per generation (a larger number of auctions results in a better approximation of the payoff 

due to different valuations among other bidders). However, some of the noise is also due to 

the existence of mutation, because of which the current strategy is slightly perturbed from 

the optimal strategy.   
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Figure 5-2: Experiment Results Compared to Theoretical Strategy 

5.5 Experiment Set A: Simulation Results 

5.5.1 Experiment One, Two and Three--n = 8 Bidders, k = 2, 3, and 4 Items  

In all three experiments, the seller’s α chromosome converges to α = 0.9999 and the P 

chromosome does not converge. This is because when α is nearly 1, a second chance offer 

always occurs in Stage II; hence the fixed price, P, is never tested; and therefore does not 

converge. The bidding function (lookup table) for 2 items converges as in Figure 5.3.  

 

We compare the analytically-obtained strategy derived in Chapter 4 with the experimental 

results. When α = 1, the analytically-obtained strategy for valuation less or more than P is 

the same based on equation (1) in Chapter 4.  
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Figure 5-3: Strategy Comparison of Experiment One 

Figures 5-3, 5-4 and 5-5 show both the analytically-obtained strategy and the bidding 

strategy obtained from experiment results for all three experiments.  
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Figure 5-4: Strategy Comparison of Experiment Two 

 

Figure 5-5: Strategy Comparison of Experiment Three 
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In all three experiments, it can be observed that even though the two strategies are not 

identical, the bidding strategy obtained using genetic simulations is similar to the 

analytically-obtained strategy; especially for high valuations. Solutions to the analytically-

obtained strategies for these values of k are increasing, but not injective. A reasonable 

explanation is that because the bidders’ fitness function is defined as expected payoff, and a 

non-zero contribution to the fitness function occurs only when the bidder wins, a higher 

percentage of the total payoff occurs for a high valuation, because a high valuation has a 

higher probability to win the auction with higher bids. When the bidders’ fitness function is 

changed to 
)()( xGxH

payoff

+
, figure 5-6 shows the preliminary results from an experiment that 

only conducts 200 auctions per generation after 500 generations. The bidder’s expected 

payoff is denoted as )])(1()()[())(( PxbxxHbxxG −−+−+− αα  from chapter 4. 

Because the seller’s α converges to 0.9999, we can then rewrite the expected payoff to 

))](()([))(())(( bxxHxGbxxHbxxG −+=−+− . The modified fitness function is to 

optimize x-b. It is important to note that the modified fitness function cannot be applied to 

experiments where the optimal value of α is not known to be 1 because the expected payoff 

equation is different.  
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Figure 5-6: Bidding Function Comparison Using the Modified Fitness Function 

We conduct a numerical analysis with the bidding function obtained from experiments with 

the modified fitness function. We first show that any different combination of P and α does 

not increase total revenue in figure 5-7, which provides average revenue over 10,000 

auctions. In figures 5-8 and 5-9, we show that neither random over-bidding nor random 

under-bidding with any percentage range increases bidder payoff. Bidder No. 1 over-bids 

and under-bids while bidder Nos. 2 to 8 bid according to the bidding function. Therefore, 

we’ve show that near Nash equilibrium is obtained from the numerical analysis thus it is 

evolutionary stable. Deviation does not benefit. As noted in [Riechman 01], results 

obtained from genetic algorithms are not considered perfect Nash equilibrium. This is 

because, in a GA experiment, due to mutation, the entire population does not adopt the 

Nash symmetric strategy, but almost all of it does.  
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The main reason that we are exploring the difference between the original fitness function 

and the modified fitness function is because it shows that the modified fitness function 

provides similar results in fewer generations. This is crucial because we plan to conduct 

further experiments with a larger number of bidders. When the number of bidders 

increases, the number of auctions required to obtain a reasonable approximation of the 

average payoff increases exponentially3 and the amount of time each generation takes to 

finish increases with it. With the modified fitness function, we can obtain analytically-

obtained strategies from experiments with a smaller number of total generations, and a 

smaller number of auctions per generation.  

 

Figure 5-7: Total Revenue Comparison for Different P and α 

 

                                                 
3 Because of 

1)( −= nxxG , and n is the number of bidders.  
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Figure 5-8: Bidder Payoff With Over-Bidding 

 

Figure 5-9: Bidder Payoff with Under-Bidding 
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5.5.2 Experiment Four and Five--n = 8 Bidders, k = 5, and 6 Items  

In the experiment with k = 5 items, the seller’s value of α converges to 0.0015, and the 

value of P converges to 0.507. In the experiment with k = 6 items, the seller’s value of α 

does not converge between 0 and 0.5, but the value of P converges to 0.4776. The results 

suggest that the seller’s best response is randomizing between a second chance offer and a 

fixed price offer. The optimal fixed price offer is 0.507 and 0.4776 respectively for k = 5 

and 6. Numerical analysis is conducted in a later section to show that this is consistent with 

a near Nash equilibrium strategy. Figure 5-10 shows the comparison between the bidding 

function obtained from the experiment with k = 5 items and analytically-obtained strategies 

with α = 0.0015. Figure 5-11 shows the comparison between the bidding function obtained 

from the experiment with k = 6 items and analytically-obtained results with α equal to 0.1, 

0.3 and 0.5 because α does not converge to a single value between 0 and 0.5. As shown in 

the figure, several analytically-obtained strategies are not monotonic increasing; hence the 

experimental outcomes are not expected to match the analytically-obtained strategies. The 

analytically-obtained strategies are not injective in both experiments.  

 

In Section 5.7 we study the variation in the bidding strategy, across the population in a 

single experiment, as well as across experiments. We find that there is a very small 

variation across the population as well as across strategies for k = 5; this leads us to 

conclude that the genetic algorithm has converged to a symmetric equilibrium bidding 

strategy. On the other hand, for k = 6, we find a small variation (among bidding strategies 

averaged over the population) across experiments, but a larger variation across the 

population for a single experiment. Further, the variation across the population does not 
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change significantly with an increase in the number of generations, leading us to conclude 

that the experiment does not converge to an equilibrium strategy; further, that the average 

strategy obtained is consistent across experiments.  We hence conclude that the strategy of 

Figure 5-7 is not the equilibrium bidding strategy for k = 6, and that bidding strategies are 

likely to be mixed strategies, and hence that we need a different approach to parameterize 

the strategies. Details on the study of the variation may be found in section 5.7, and details 

on the study of mixed strategies may be found in section 5.9.  
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Figure 5-10: Strategy Comparison of Experiment Four 
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Figure 5-11: Strategy Comparison for Experiment Five 

5.5.3 Experiment Six and Seven—n = 8 Bidders, k = 7 and 8 Items  

In the experiment with k = 7 items, the seller’s α chromosome converges to 0.09, and the P 

chromosome converges to 0.4684. Results suggested that seller’s best response is to always 

make a fixed price offer at 0.4684. In the experiment with k = 8 items, the seller’s α 

chromosome converges to 4.9e-07, and the P chromosome to 0.4809. The following figures 

show the comparison between bidding strategies obtained from the experiment and 

analytically-obtained strategies. In the experiment with k = 7 items, the difference between 

the experimental results and the analytically-obtained strategies appear to be because, in the 

GA simulation, because fixed-price offers are made to randomly chosen bidders, bidders 

with valuation greater than P can risk low bids when α is small. In the experiment with k = 

8 items, the analytically-obtained strategy is not monotonic increasing.  
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Figure 5-12: Bidding Strategy from Experiment Six 
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Figure 5-13: Bidding Strategy from Experiment Seven 
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We study the variance across the population and across experiments in section 5.7, and 

conclude, as with k = 6, that the bidding strategies in Figures 5-12 and 5-13 are not 

equilibrium bidding strategies, and that equilibrium bidding strategies for k = 7 and k = 8 

are likely to be mixed strategies. We study mixed strategies in section 5.9.  

 

5.6 Numerical Analysis 

5.6.1 Demonstrate Near Nash Equilibrium for Experiments Four and Five 

Bayesian strategies for experiment four have negative values and are not invertible as 

shown in Figure 5-10. To show that the experimental results reach Nash equilibrium, we 

conduct a numerical analysis from both the seller’s side and the bidder’s side. In 

experiment four, experimental results show that the seller’s value of α does not converge, 

and that the seller’s value of P converges to 0.507. In experiment five, it shows that the 

seller’s value of α does not converge between 0 and 0.1, but that the seller’s value of P 

converges to 0.4776. 

 

5.6.1.1 Sellers’ Side 

For experiment four, we first show that any different combination of P and α does not 

increase total revenue in Figure 5-14. It also shows that with P fixed at 0.5, total revenue 

does not change for any α. This is average over 5,000 auctions. We show the same result 

for experiment five with α ranging from 0 to 0.1 in figure 5-15.  
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Figure 5-14: Total Revenue Comparison for Different α and P, Experiment 4 

 

Figure 5-15: Total Revenue Comparison for Different α and P, Experiment 5 
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5.6.1.2 Bidders’ Side 

If the seller’s α and P are the same as obtained from experiments, we show that over-

bidding does not profit bidders in figure 5-16 and 5-17 for experiment four and five 

correspondingly. All the following numerical results are obtained from averages over 5,000 

auctions as well. In figure 5-16 and 5-17, bidder No. 1 always over-bid a random 

percentage between 0 to 100%, but not exceeding its valuation, and bidder No. 2 to No. 8 

bid according to the bidding function obtained from experiment results. 

 

Figure 5-16: Bidder Payoff Comparison for Over-bid, Experiment 4 
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Figure 5-17: Bidder Payoff Comparison for Over-bid, Experiment 5 

 

Figure 5-18: Bidder Payoff Comparison for Under-Bid, Experiment 4 
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Figure 5-19: Bidder Payoff Comparison for Under-Bid, Experiment 5 

We also show that under-bidding does not profit bidders in figures 5-18 and 5-19 for 

experiment four and five. In each auction, bidder No. 1 always under-bid a random 

percentage between 0 and 1, but no lower than zero, and bidder No. 2 to No. 8 bid 

according to the bidding function obtained from experiment results.  

 

Furthermore, we show that over-bidding does not profit bidders even for a small percentage 

in figures 5-20 and 5-21. In each auction, bidder No. 1 always randomly over-bid in a 10% 

range and bidder No. 2 to No. 8 bid according to the bidding function obtained from 

experiments. 
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Figure 5-20: Bidder Payoff Comparison for Over-Bid in a Small Range, Experiment 4 

 

Figure 5-21: Bidder Payoff Comparison for Over-Bid in a Small Range, Experiment 5 
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Similarly, in figures 5-22 and 5-23, we show that under-bidding does not profit bidders 

even for a small percentage. In each auction, bidder No. 1 always randomly under-bid in a 

10% range and bidder No. 2 to No. 8 bid according to the bidding function obtained from 

experiments. We show that neither over-bidding nor under-bidding in a small range results 

in higher bidder payoff even in a small range; therefore, deviation from the bidding 

function obtained from experimental results does not benefit bidders. We also show that 

deviation from α and P for the seller does not benefit sellers. We can now conclude that 

results in experiment four and five reached Nash equilibrium because it consists of mutual 

best responses for sellers and bidders.  

 

Figure 5-22: Bidder Payoff Comparison for Under-Bid in a Small Range, Experiment 4 
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Figure 5-23: Bidder Payoff Comparison for Under-Bid in a Small Range, Experiment 5 

 

5.6.2 Show Nash Equilibrium for Experiments Six and Seven 

Similar to experiments four and five, Bayesian strategies for experiment six and seven also 

have negative values and are not monotonic increasing. To show that the experimental 

results reach Nash equilibrium, we conduct a numerical analysis from both sellers’ side and 

bidders’ side. In experiment six, experimental results show that the seller’s value of α 

converges to 0.001, and the seller’s value of P converges to 0.4684. In experiment seven, 

we see that the seller’s value of α converges to 0.001, and the seller’s value of P converges 

to 0.4809. We obtain the same results for experiment seven; in the following section we 

only show the figures from experiment six. 
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5.6.2.1 Sellers’ Side 

We first show that any different combination of P and α does not increase total revenue in 

figure 5-24. It also shows that with P fixed at 0.4684, the total revenue reaches its highest 

at α near 0. The values are averaged over 5,000 auctions.  

 

5.6.2.2 Bidder’s Side 

If the seller’s values of α and P are the same as obtained from experiments, we show that 

over-bidding does not profit bidders in figure 5-25. All the following numerical results are 

obtained by averaging over 5,000 auctions. In each auction, bidder No. 1 always over-bid a 

random percentage and bidder No. 2 to No. 8 bid according to the bidding function 

obtained from experiment results. We show that for any percentage, over-bidding does not 

result in higher payoff. 

 

Figure 5-24: Total Revenue Comparison for Different α and P 

 



www.manaraa.com

 

 76  

 

Figure 5-25: Bidder Payoff Comparison for Over-Bid 

Similarly, in figure 5-26, we show that under-bidding does not profit bidders for any 

percentage. In each auction, bidder No. 1 always under-bid and bidder No. 2 to No. 8 bid 

according to the bidding function obtained from experiment results 

 

Figure 5-26: Bidder Payoff Comparison for Under-Bid 
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Based on the numerical analysis above, neither deviation for bidders nor deviation for 

sellers benefits them. It is shown that Nash equilibrium is reached because it is a mutual 

best response for both sellers and bidders.  

 

5.7 Mixed Strategy Analysis 

As pointed out in [Riechmann 01], the variance of the chromosome across the population in 

genetic algorithm simulations can be used as a measure of convergence. The smaller the 

variance is, the more converged the genetic population is. That is under the assumption that 

the solution is a pure, non-probabilistic strategy. If there is no solution that is a pure non-

probabilistic strategy, the the population variance will remain high.  

 

Figure 5-27: Comparison of Variance of Round 1 
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Figure 5-28: Comparison of Average Variance over 5 Rounds 

We studied the variance across the bidder population, as well as across experiments. We 

notice that the population variance for the bidder chromosome is considerably larger for k 

= 6, 7 and 8 than that for k = 5, see Figure 5-27 for the population variance of the first 

round and Figure 5-28 for average population variance of 5 rounds of experiments.  We 

also observe the variance over 6,000, 7,000, 8,000, 9,000 and 10,000 generations for k = 6, 

7 and 8, and determine that it does not change significantly. We hence conclude that the 

population has achieved evolutionary stability; however, the larger variance implies that it 

is possible that the strategy is not a deterministic strategy, but is, instead, a mixed strategy, 

which our chromosome encoding scheme does not capture accurately. 

 

Consider the bidding strategy result of a single experiment (that is, the average value of the 

bidder chromosome across the population) as a vector of random variables (the value of the 
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bid for each valuation is a random variable). We carried out five such experiments, 

obtained five vectors of instances of the random variables, and used these samples of the 

random variables to estimate their variances. The estimated variance, as a function of 

valuation, is plotted in figure 5-29 for k = 5, 6, 7, and 8. As plotted in figure 5-29, we 

observe that each of these values is very small for k = 5, 6, 7 and 8. We hence conclude 

that the observed results are indeed repeatable, and hence that our conclusions, that we 

have obtained bidding strategies for k = 5 but not for k = 6, 7 and 8 are correct. In 

experiment B, we change the encoding scheme of the bidder chromosomes to allow mixed 

strategies. It is important to note that the encoding scheme still allows pure strategies. 

Details are discussed in section 5.9.  

 

Figure 5-29: Unbiased Estimate of Variance in Bidding Strategy across Experiments 

5.8 Experiment Set A: Summary 

We summarize our experimental results as follows, in this 8-bidder-2-stage game: 
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1. k = 2, 3, and 4: The seller’s best response is to price discriminate. The bidder’s best 

response is consistent with the Bayesian strategy. This means that the seller prefers 

the privacy-infringing choice and the best the bidders can do is to bid the Bayesian 

strategy. Rational behavior does not decrease bids enough to deter seller from using 

price discrimination.  

2. k = 6: The seller’s optimal strategy is to randomize its action between price 

discrimination and a uniform-price offer. Bidders have a bidding strategy that is 

different from the Bayesian one and is likely to be a mixed strategy. This implies 

that the seller is indifferent about privacy-protection and privacy-infringing choices.  

3. k = 5, 7,8: The seller’s best response is to always make uniform-price offers and the 

bidder’s best response is pure strategy for k = 5, and is likely to be a mixed, 

randomized strategy for k = 7, 8. This means that sellers prefer the privacy-

protecting choice, and, for k = 7, 8, part of the bidder’s best response is between 

dropping out by bidding zero, or revealing valuation by bidding its valuation.  

 

To summarize experiment set A, when first-price auction is adopted at stage I, it is clear 

that different degrees of item scarcity make a difference for the seller’s choice between 

privacy protection mechanism and privacy infringement mechanism. Bidders respond by 

changing their bidding strategy for different degrees of privacy invasion.  

 

5.9 Experiment Set B: Mixed Strategy Experiment 

From experiment set A, we observe that it is highly possibly to have a mixed strategy when 

the bidders’ chromosome has high variance over the population. In this experimental set, 
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we change the design of bidder chromosomes to analyze possible mixed strategies. In the 

previous two sets of experiments, the bidder’s chromosome is encoded as a valuation-to-

bid lookup table. Each valuation has a bid. It is harder to reverse engineer the composite of 

possible mixed strategies with only a valuation-to-bid mapping, because a mixed strategy is 

composed of probabilities and bids. For example, if a mixed strategy contains two 

strategies with 50% probability each: bid 0 and bid 1. It means that half of the time a bid 0 

is submitted and a bid 1 otherwise. To better represent a mixed strategy, we encode the 

bidder chromosome as an m-by-m matrix where m is the number of bids that can be 

submitted. Each element within this matrix represents the probability of this bid. For 

example, the bidder chromosome can be illustrated in the following table:  

Table 5-1: Bidder Chromosome Example 

 Bid 0 Bid 0.5 Bid 1.0 

Valuation  0 0% 0% 0% 

Valuation 0.5 50% 50% 0% 

Valuation  1.0 30% 60% 10% 

 

In this example, with valuation 1.0, 30% of the time the bidder submits a 0 bid and 60% of 

the time a 0.5 bid is submitted. In this set of experiment, bidders are not allowed to submit 

a bid that is higher than its valuation; therefore the element (2, 3) = 0% because bidder with 

valuation 0.5 cannot submit a 1.0 bid. The idea of encoding bidder chromosome with a m-

by-m matrix is to convert this problem from one where the bid is drawn from the 

continuous solution space [0, 1]  to one where it is drawn from a discrete solution space of a 
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few possible bids. In this set of experiments, the first-price auction and the uniform 

distribution are adopted. Bidder valuation ranges from 0 to 1 with equal probability.  

 

5.10 Experiment Set B: Simulation Results 

5.10.1 Experiment One--, n = 8 Bidders, k = 6 Items  

We conduct two versions of this experiment. In the first version, the bidder chromosome is 

encoded by a 5-by-5 matrix. It means that each bidder can have 5 types of valuation: 0, 

0.25, 0.5, 0.75, and 1.0. Each bidder is allowed to submit 5 different bids with different 

probability. No bid higher than valuation is allowed to be submitted. We obtain the 

following bidder chromosome matrix from the experiment after 4000 generations with 

1000 auctions in each generation:  

 

Table 5-2: Bidder Chromosome from Experiment One 

 Bid 0.0 Bid 0.25 Bid 0.5 Bid 0.75 Bid 1.0 

Valuation 0.0 100% 0% 0% 0% 0% 

Valuation 0.25 3.31% 96.69% 0% 0% 0% 

Valuation 0.5 3.82% 86.89% 9.29% 0% 0% 

Valuation 0.75 2.94% 6.77% 89.87% 0.43% 0% 

Valuation 1.0 2.78% 4.95% 91.93% 0.23% 0.12% 

 

In this matrix we cannot observe an obvious mixed strategy because each type of valuation 

has a mapping bid with very high probability. It is more likely to be a pure strategy instead. 
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We then conduct the second version of the experiment with an 11-by-11 matrix for the 

bidder chromosome. This experiment also has 4,000 generations and 1,000 auctions per 

generation. We plot the bidder chromosome in figure 5-30. For valuation lower than 0.5, 

there does not exist an obvious mixed strategy. We extract the bidder chromosome of 

valuation higher than 0.5 and plot it in figure 5-31. We can observe that there are two major 

bidding strategies exhibited in the plot: bidding 0.5 and a less than 0.5 bid with different 

probabilities.   

 

 

Figure 5-30: Bidder Chromosome from Experiment One 
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Figure 5-31: Bidder Chromosome from Experiment One, Higher Valuation 

 

5.10.2 Experiment Two—n = 8 Bidders, k = 7 Items  

Similar to experiment one, we conduct two versions of the experiment with 8 bidders, k = 7 

items, the uniform distribution, and the first-price auction. The following table illustrates 

the experimental results when the bidder chromosome is encoded as a 5-by-5 matrix.  

 

The experimental results are different from experiment one, but, as in experiment one, no 

obvious mixed strategy is observed at this level of sampling of the bid/valuation space. We 

further conduct the second version of the experiment with an 11-by-11 matrix. The 

following two figures illustrate the bidder chromosome obtained from experiment. 
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Table 5-3: Bidder Chromosome from Experiment Two 

 Bid 0.0 Bid 0.25 Bid 0.5 Bid 0.75 Bid 1.0 

Valuation 0.0 100% 0% 0% 0% 0% 

Valuation 0.25 83.71% 16.29% 0% 0% 0% 

Valuation 0.5 1.7% 94.61% 3.7% 0% 0% 

Valuation 0.75 1.13% 94.14% 3.98% 0.75% 0% 

Valuation 1.0 1.48% 94.20% 3.80% 0.3% 0.22% 

 

 

Figure 5-32: Bidder Chromosome from Experiment Two 
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Figure 5-33: Bidder Chromosome from Experiment Two, Higher Valuation 

 

5.10.3 Experiment Three—n = 8 Bidders, k = 8 Items  

Similar to experiments one and two, we conduct two versions of this experiment with n = 8 

bidders, k = 8 items, the uniform distribution and the first-price auction. The following 

table illustrates the experimental results when the bidder chromosome is encoded as a 5-by-

5 matrix.  

 

The experimental results are different from those of experiment one, are similar to those of 

experiment two; no obvious mixed strategy is observed. On conducting the second version 

of the experiment with an 11-by-11 matrix, we obtain bidder chromosomes illustrated in 

Figures 5-34 and 5-35. 
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Table 5-4: Bidder Chromosome from Experiment Three 

 Bid 0.0 Bid 0.25 Bid 0.5 Bid 0.75 Bid 1.0 

Valuation 0.0 100% 0% 0% 0% 0% 

Valuation 0.25 86.54% 13.46% 0% 0% 0% 

Valuation 0.5 1.51% 94.76% 3.73% 0% 0% 

Valuation 0.75 1.22% 95.24% 2.91% 0.63% 0% 

Valuation 1.0 0.99% 96.41% 2.03% 0.35% 0.22% 

 

 

 

Figure 5-34: Bidder Chromosome from Experiment Three 
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Figure 5-35: Bidder Chromosome from Experiment Three, Higher Valuation 

 

In this experiment, from figure 5-35, we can observe it is likely to have two different mixed 

strategies: bidding 0.5 and bidding below 0.5 uniformly. The distribution of the bidding 

strategy below 0.5 is more likely to be uniform than in experiments one and two.  

 

5.11 Experiment Set B: Summary 

We summarize our experimental results as follows, when analyzing the mixed strategy: 

1. Granularity matters: we have to conduct two versions of experiments with different 

granularity because the first version changes the nature of the game. We have to be 

careful about the observations we make with different granularity. 

2. When converting the game into a discrete solution space, we cannot take the 

solution from the discrete version and conclude that the same solution also applies 
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to the continuous version. However, we can make better observations when the 

granularity is right. One way to find the right granularity is iteratively dividing the 

continuous space into more discrete actions; when the results don’t change, we can 

know that this is the minimum granularity to mimic the game of continuous space. 

In our experiment, we have also conducted experiments with a 21-by-21 matrix as 

bidder chromosome. The result is not different from that of an 11-by-11 matrix as. 

We thus conclude that 11-by-11 matrix is the minimum granularity for this problem.  
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CHAPTER 6: EXPERIMENTAL DATA FROM EBAY  

In this chapter, we describe the genetic algorithm simulation results of experiment set C. It 

takes input from real data on eBay as well as from a uniform distribution between the 

highest and lowest valuations estimated from eBay data. We also describe the 

implementation of a software bidding tool for bidders to adjust bidding strategies 

considering the possibility of a single second chance offer (that is, k = 2) after auctions end. 

It is developed based on our model and genetic algorithm experiments. In the following 

sections, the experimental data is presented, and the features, the platform and the language 

of the bidding tool are documented.  

 

6.1 Experiment Set C: Bidder Valuation Distribution from eBay Data 

For experiment set C, we collect real auction data from eBay to obtain the valuation 

distribution for bidders. We conduct experiments for both the real data distribution and the 

uniform distribution. There are certain constraints about gathering auction data from eBay. 

First, only data from auctions completed in the past two weeks are publicly available; 

second, a keyword search is needed to gather all auctions for the same item. Keyword “Wii 

14” was used to pull all the auctions of a unique bundle of the Wii gaming console, two 

remote controllers and 14 games. We chose this item because it has a low inventory in 

retail stores and is thus very popular on eBay.  

 

After gathering raw data, we clustered all the auction data by number of bidders. We 

observed that the number of auctions with 8 and 13 bidders was in the hundreds, large 
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enough to make an accurate estimate of F(x,) the cumulative distribution function. For the 

uniform distribution, F(x) = x. The difficulty of computing F(x) from eBay data is the bids 

of an auction only show the valuation of all bidders except the winner. Because the highest 

valuation, x, is unknown, we have to compute an estimate of F(x) as follows:  

� Step 1: for each auction, calculate F2(x):  

)(2

2
)(2 auctionsofnumberbiddershighestndofnumbertotal

xbelowbiddershighestndofnumber
xF =  

� Step 2: from F2(x) compute F(x) based on order statistics, where n is the number of 

bidders: [ ] nn xFxFxnFxF )()(1)()( 1
2 +−= −  

Results from previous two steps are pairs of F(x) and x; a polynomial function can be 

obtained with least square approximation using Matlab. We plot the result in the following 

figure.  

 

Figure 6-1: F(x) from Least Square Approximation 
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Seven experiments are conducted with n = 8 bidders each and number of items k =2, 3, 4, 

5, 6, 7 and 8. Each experiment has two versions—version one has bidder valuation 

generated based on F(x) obtained from real eBay auctions; version two is run with the 

bidder valuation set to be uniform (which would result in a linear function F(x)).  

 

Figure 6-2: Bidding Strategy from Experiment One 

6.2 Experiment Set C: Simulation Results 

6.2.1 Experiment One and Two --n = 8 Bidders, k = 2, and 3 Items  

In all three experiments, the seller’s α chromosome converges to α = 0.9999 and the P 

chromosome does not converge. This is because when α is nearly 1, a second chance offer 

always occurs in Stage II; hence the fixed price, P, is never tested; and therefore does not 

converge. 
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We compare the analytically-obtained strategy derived from Chapter 4 with the 

experimental results. When α = 1, the Bayesian strategy for valuation less or more than P is 

the same based on equation (1) in Chapter 4. Figures 6-2 and 6-3 show both the 

analytically-obtained strategy and the bidding strategy obtained from experimental results 

for both experiments. For both the uniform and non-uniform distributions, the two lookup 

tables are almost identical. This implies that there is no strategy, in either experiment, that 

is a mix of two strategies, and, additionally, that a pure strategy is a symmetric equilibrium 

for both distributions.  

 

Figure 6-3: Strategy Comparison of Experiment Two 
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Figure 6-4: Bidding Strategies of Experiment Three 

6.2.2 Experiment Three, Four, Five, Six and Seven--n = 8 Bidders, k = 4, 5, 6, 7 and 8 

Items  

In all five experiments, the seller’s α chromosome converges to α = 0.9999 and the P 

chromosome does not converge. This is also because the fixed price, P, is never tested; and 

therefore does not converge. 

 

As observed in Chapter 4, it is not possible to obtain optimal bidding strategies using 

Bayesian analysis when k is large; hence, in figure 6-4, 6-5, 6-6, 6-7 and 6-8, we cannot 

compare the bidding strategies obtained from GA simulations to analytical results. 

However, it is clear from the experimental results that pure bidding strategies exist at 

equilibrium.  
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Figure 6-5: Bidding Strategies of Experiment Four 

 

Figure 6-6: Bidding Strategies of Experiment Five 
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Figure 6-7: Bidding Strategies of Experiment Six 

 

Figure 6-8: Bidding Strategies of Experiment Seven 
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6.2.3 eBay Data with Optimal Bidding Strategy: n = 8 Bidders and 2 Items  

As described in section 6.1, we collected auction data from eBay with keyword “Wii 14”. 

Data from 140 auctions were used to obtain bidders’ valuation distribution over a 2 week 

period. The second highest bid of every auction is collected. We assume that the bid equals 

to valuation for all the second highest bidders because they bid as high as they can before 

dropping out. We take the valuation as input and compute a new optimal bid based on the 

bidding strategy obtained from experiment one. We assume that there are only 2 identical 

items available in all the 140 auctions. We calculate the difference between the actual bid 

submitted on eBay and our suggested, optimal bid and consider the difference to be 

possible saving (payoff) for all the second highest bidders.  It is also the additional saving 

for the highest bidders. We plot the histogram of the bidder payoff if strategies obtained 

from experiments are adopted. The average saving for every bidder is 22.01 dollars.  

 

Figure 6-9: Bidder Payoff 
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6.3 Experiment Set C: Summary 

We summarize our experimental results as follows, in this 8-bidder-2-stage game: 

1. The seller’s optimal strategy is to always price discriminate regardless of k.  

Because α = 1, there is a corresponding pure bidding strategy for any number of 

items. 

2. The bidder’s best response is to shade (reduce) its bids according to (1) the value of k 

and (2) distribution of bidder valuation.  

 

To summarize experiment set C, when the second-price auction is adopted at stage I, it is 

clear that different degrees of item scarcity make a difference for bidders’ optimal 

strategies but not for the sellers. Sellers would always prefer privacy infringement 

mechanism. It could be because of the following reasons: (1) second-price auction 

mechanism is used at stage I, it may push bidders to bid higher even there are more than 

one stage, (2) the bidder valuation ranged from $297 to $446—different from experiment A 

with a range between 0 and 1.  

 

6.4 Major Component and Code Flow 

There are four major components of this bidding tool, including (1) an interactive user 

interface component, (2) an eBay data collecting component, (3) a valuation distribution 

computing component, (4) a genetic algorithm experiment component. Figure 6-10 

illustrates the whole process, beginning with taking user input to computing a suggested 

bid.  
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6.5 Module and Programming Language Used 

The entire bidding tool is written using the Python programming language. For the 

interactive user interface component, the EasyGUI module, an open source project written 

in Python, is adopted. It includes basic GUI features such as a message box, and can be 

programmed to accept user input. . For the eBay data collection and valuation distribution 

components, open source modules including easyBay, SciPy, NumPy modules are used. 

The easyBay module translates XML results gathered from querying eBay’s API into 

Python objects for further computation. SciPy and NumPy are scientific and mathematic 

computing modules that provide features including least square fitting and polynomial 

roots finding. The genetic algorithm experiment component is made of reused code from 

previously developed experiments described in section 6.2.  
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Figure 6-10 Flow Chart of the Bidding Tool 

6.6 Usage Illustration and Limitation 

The following screen shots are taken to illustrate the usage of this bidding tool. It first asks 

the user to provide keywords for the target item. After computing the bidding function, it 

asks the user to provide the maximum he or she is willing to bid for such an item, and then 

returns a suggested bid. The example shows a user searching for a Wii game console as a 

bundle of 14 games. The user has is willing to pay $180.50 for such an item.  
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Figure 6-11: User Provides Keyword 

 

Figure 6-12: User Provides Valuation 

 

Figure 6-13: Tool Provides Bid Suggestion 
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A full scale genetic algorithm experiment as described in section 6.2 takes at least one 

week to complete on a machine of Intel Core Duo 1.8GHz processor with 2GB memory. It 

is not feasible for the bidding tool since auction listing on eBay has a time limit that can be 

as short as 3 days. To shorten the running time for the genetic algorithm experiment 

component, this component assumes the following conditions:  

� Each generation consists of 1000 auctions 

� A total number of 100 generations 

� 200 sellers and each seller has 8 bidders 

� Mutation rate is set to be 1/22 

 

As a result of the shortened simulation, the bidding function has to be approximated with a 

least squares method. This reduces the accuracy of the optimal bidding strategy, but can be 

completed in 1.5 hours on a machine with Intel Core 2 Duo 2.1GHz processor and 4GB 

memory The number of bidders and available items can be easily modified if more features 

are provided for the user to specify auction to participate by identify the eBay auction ID. 

The bidding tool can gather information for a specific auction such as number of current 

bidders and take it as input for genetic algorithm experiments.  

 

The number of available items (the value of k) is not publicly available information at this 

time. Because this information is not available, the bidding tool does not have a means of 

estimating seller reputation: the frequency with which the seller utilizes the second chance 

offer mechanism. However, if eBay were to make available information on seller 



www.manaraa.com

 

 103  

reputation, this information could easily be used by the tool to improve the accuracy of 

bidding strategies.  

 

6.7 Observation 

An intelligent bidding tool can be helpful as a privacy protection mechanism. We have 

developed one based on our analysis of a multi-stage game that takes repeated re-

encounters into consideration. It is important to note that the suggested bid does not 

guarantee winning the auction, as whether an auction is won depends on both, the bid and 

the valuations of other participating bidders. However, the suggested bid comes close to 

maximizing bidder payoff if the seller has one extra identical item.  

 

The trade-off between running time and bidding strategy accuracy can be improved as 

computing power further evolves. Because the bidding tool is written in Python, it can be 

easily executed on both Windows and Linux/Unix platforms.  
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CHAPTER 7: CONCLUSION AND FUTURE WORK  

In this dissertation, we have proposed that privacy be approached from a game-theoretic 

perspective. We have used the perspective to study the specific problem of the second-

chance offer, by presenting a quantitative model of the second-chance offer, and a 

(randomized) generalization of the deterministic game of [Joshi, Sun and Vora 05]. We 

have used this approach to examine the feasibility of rationality as a privacy-protection 

mechanism in auctions. We are the first to study randomized seller strategies in auctions, 

and privacy games without closed-form solutions.  

 

We have examined this game with both first-price and second-price auctions in stage I. 

Real auction data on eBay is collected as part of input to our genetic algorithm 

experiments. We have also examined the case of item scarcity. We have presented the 

results—obtained through both, Bayesian analysis and experimental results conducted with 

genetic algorithm simulations. It is shown that rationality provides sufficient privacy 

protection when items are not scarce, but not otherwise. We have also implemented bidding 

software as a proof of concept to utilize optimal bidding strategies on eBay. Rationality can 

provide limited privacy protection as automatic bidding tools. In summary, we have shown 

that rational behavior can perform the task of privacy protection, and that this can be 

implemented as a rational bidding tool in the security infrastructure. In particular, 

cryptographic schemes are not the only solutions for privacy protection.  
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We have conducted three sets of genetic algorithm experiments. In experiment set A, we 

are able to obtain pure bidding strategies for n = 8 bidders and k = 2, 3, 4, 5 items. We 

have observed the existence of possible mixed strategies for n = 8 bidders and k = 6, 7, 8 

items. We further conduct experiment set B and successfully obtain the mixed strategies by 

changing the encoding of bidder chromosomes. In experiment set C, we apply the 

techniques developed in previous experiment sets with real eBay data. We are able to 

obtain pure bidding strategies when second-price auction mechanism is used in stage I.  

 

Possible future work includes (1) generalizing the privacy model of a two-stage game into 

a repeated, infinite stage game, (2) applying genetic algorithm experiment for other 

problems with interdependent objective functions, and (3) applying the encoding scheme 

developed in this dissertation to obtain mixed strategies in other type of games and 

exploring other encoding schemes as well.  
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APPENDICES 

Appendix A 

Proof: Theorem 2. The expected payoff due to bid b, when all others are bidding according 

to strategy β, is, from section 4.1: 
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To find the bidding strategy β*  that maximizes the expected payoff, we differentiate (1) wrt 

b, equate to zero, and, assuming a symmetric strategy among bidders, replace b with β*(x). 

This gives us: 
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Integrating both sides wrt x gives:  
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Solving for β* gives:  
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When x is uniformly distributed, 1)( −= nxxG ; and 

x
n

n

xG

dxxxG 1

)(

)(' −
=∫  

may be substituted in (2).  

We now show that unilateral deviation by a single bidder does not provide benefit. Clearly, 

there is no value in submitting a bid greater than the highest value of β*(x) because the 

bidder can certainly win with a bid that is equal to this highest value. Similarly, there is no 

value in submitting a bid lower than the lowest value of β(x), as this bid will certainly not 

be a winning bid. Hence a deviating bidder will only provide a bid from the range of β*. 

 

Suppose a bidder with valuation x bid β*(z), z ≠ x. We consider cases when both x and z are 

smaller than and greater than P, and, also when x < P < z and z < P < x.  

Consider the case when x < P and z < P. The bidder’s payoff is: 

))](*()[())(*)(()]),(*([ zxzHzxzGxzE βαββ −+−=Π                   (3) 

Further,  

))](*()[())(*)(()]),(*([ xxxHxxxGxxE βαββ −+−=Π                   (4) 

To show that bidders do not have an incentive to unilaterally deviate, we need to show that 

 0)]),(*([)]),(*([ ≥Π−Π xzExxE ββ  for x ≤ z and for x > z. 

Substituting (2) in (3) and (4) gives:  

∫ ∫+=Π
x x
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0 0

)()()]),(*([ αβ                                    (5) 

and:  
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Subtracting (6) from (5) gives: 
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where K(x) is the probability that x is among the k highest bidders, K(x) = G(x) + H(x). 

The expression above is non-negative, by an argument similar to that provided for the 

derivation of the equilibrium bidding strategy in a classical first-price auction in [Krishna 

02], for both x ≥ z and x ≤ z, because both G(x) and K(x) are monotonic increasing.  

 

We now examine the case for x ≥ P and z ≥ P. The expected payoff for bidding β*(z), when 

x ≥ P is 

)])(1())(*()[())(*)(()]),(*([ PxzxzHzxzGxzE −−+−+−=Π αβαββ          (7) 

Further, 

)])(1())(*()[())(*)(()]),(*([ PxxxxHxxxGxxE −−+−+−=Π αβαββ          (8) 

Again, we need to show that 0)]),(*([)]),(*([ ≥Π−Π xzExxE ββ , whether x ≤ z and for 

x > z. Again, by substituting the expression for β*(x), we obtain:  
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or:  
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Hence 
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Again, the above expression is non-negative because K(x) is monotonic increasing.  

 

Now we examine the case when x < P < z. Using (10) and (5) we obtain:  
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by argument as with the case z ≤ P and x ≤ P.  
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 Thus we have shown that bidders do not have an incentive to deviate from β*  when it is 

the strategy used by all other bidders. Hence β*  is an equilibrium strategy if 0 ≤ β* ≤ x 

and β*  is monotonic increasing.  
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Appendix B  

From section 4.3, we know that the expected payoff for the two-stage game with second-

price auction is:  

)]())[(()
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αββ      where  x < P       (1) 

To find the bidding strategy β*  that maximizes the expected payoff, we differentiate (1) wrt 

b, equate to zero, and, assuming a symmetric strategy among bidders, replace b with β*(x). 

This gives us: 

0)()()()()()()()( =−′−+− xhxxxHxxhxgxxxg αββααβ                         (2) 

To solve the partial differential equation, we have to substitute H(x) for specific n, k and α. 

In the following examples, we substitute α = 1 based on experiment results obtained in 

chapter 6. We also assume x is uniformly distributed.  

 

For n = 8 bidders and k = 2 items: 

We have 76 77)( xxxH −= , 7)( xxG = , and 65 4942)(')( xxxHxh −== . Substituting (2) 

with H(x), G(x) and h(x), it gives:   

x

xx
x

)(*66
)(*'

β
β

−
=                                                       (3) 

 

Using Matlab, we can obtain the solution of (3) to be:  

xx
7

6
)(* =β  
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For n = 8 bidders and k = 3 items: 

We have 567 213514)( xxxxH +−= , 7)( xxG = , and 456 10521098)( xxxxh +−= . 

Similarly, substituting (2) with H(x), G(x) and h(x), it gives:   

)3052)((*')153015)((*153015 567456567 xxxxxxxxxxx +−++−=+− ββ        (4) 

 

Using Matlab, we can obtain the solution of (4) to be:  

)
)32(

40040180180145635108

)32(

90301944)96(1944324455832
(

17017

3

17

1
)(*

35

9863

35

52/124

−

+−++

+
−

++−−++−
+=

xx

xxxx

xx

xxxixx
xβ

 

 




