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ABSTRACT

The second chance offer is a common seller practice on eBay. It consists of price
discrimination against the losing bidder, who is offered an identical item at the value of his
or her highest bid. Prior work has shown that, if the price discrimination is certain—that is,
the items are always offered to bidders at their highest losing bids—bidders can predict it,
and it results in revenue loss for the seller. This dissertation hence allows the seller to
randomize his strategy. It examines a similar, more general problem: a seller has k items.
They are sold ta bidders in a two-stage game. The first stage is a sealed-bid private-value
auction withn bidders. The second stage is a take-it-or-leave-it offer to edctldbsing
bidders; randomized between a fixed-price offer and a second-chance offer. Showing that
analytic techniques do not provide complete solutions because bidding strategies are not
always monotonic increasing, this dissertation uses genetic algorithm simulations to
determine the Bayesian (near-Nash) equilibrium strategies for bidders and sellers 8for

and different values & It analyzes item scarcity and two types of auction mechanisms for
the first stage: first-price auction and second-price auction. It tests the approach on real
eBay data, and a rational bidding tool is implemented to illustrate the practical use of this
model on eBay. This dissertation’s use of randomized seller strategies and genetic

algorithm simulations is unique in the study of the second-chance offer.
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CHAPTER 1: INTRODUCTION

It is no longer novel to exchange personal information for merchandise or money. For
example, millions of consumers trade personal information-- such as home address, age,
gender --for grocery discount membership. Popular e-commerce sites, such as Amazon,
offer a discount coupon feature, the “gold box” for items related to an individual's previous
purchase, encouraging individuals to allow their purchases to be linked. At first glance, and
to the naive consumer, the revelation of personal information does seem to only provide a
financial benefit; however, immediate gratification may have a negative impact in the later
stage. For example, filling out a questionnaire online in exchange for a free t-shirt will lead
to numerous junk mails in the future. A study has shown that consumers tend to not take
later consequences into consideration [Acquisti 04]; it is possible that this is because future
impact is too ambiguous to take into immediate consideration. Thus, privacy, especially in
the numerous possible online interactions, is not well understood, either by researchers or
by consumers. Researchers do not have a formalization of the privacy problem that
balances the benefits with the costs, and, as a result, consumers do not completely
understand the consequences of revealing information, nor, if they did understand the

consequence, do they have a means of determining a best response.

This dissertation presents a quantitative privacy model based on game theory. The model
takes into account the fact that information revelation may provide advantages, as well as
bear costs. In the model, privacy is treated as protection from information revelation in a

multi-stage game. Interactions online, with merchants or other service providers, may be

1
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viewed as stages of a multi-stage game. Actions in one stage typically reveal information
about the player, and result in positive or negative repercussions in a later stage. The
dissertation applies this model to a special type of online interaction: eBay’s second-chance

offer.

Note that, if future impact is not ambiguous, as it is now, rational agents can help players,
such as consumers, to play rationally. One may hence imagine the model presented in this
dissertation as enabling a privacy infrastructure where, in addition to security tools for the
protection of personal information, rational agent tools helped a consumer decide how
much information to reveal, when, and to whom. Today, however, the basic building
blocks for such an infrastructure do not exist. For example, how would one derive a
strategy given a set of stages (auctions, retail sales, etc.) in a game? How does one
determine when it is useful to protect a player in a game (like a bidder in an auction) and
not reveal the identity of the player? When is it useful for the player to be recognized? Can
we build automatic tools with optimal bidding strategies in mind? This dissertation focuses
on a generalization of eBay's second-chance offer to make more specific the privacy

problem and to provide strategies for the consumer that best balance benefit with cost.

1.1 The Second-Chance Offer and a Generalization

Consider an open-cry first-price private-value auction such as on eBay. If the auction is a
stand-alone game not connected to any other, and timing effects are ignored, the best
strategy for each bidder is to bid higher than other bidders, xjpghte valuation. Thus, at

the end of the auction, only the winning bidder has not bid as high as his valuation. On the
2
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other hand, the highest losing bids of all other bidders, who have dropped out of the
bidding, reflect their valuations. This strategy may be exploited by the seller through a
second stage of price discrimination where a losing bidder is offered the item at his highest
failed bid. This is commonly used on eBay, where it is termedehend-chance offer

When bidders do not anticipate the second-chance offer, the highest failed bids are bidder
valuations, and the second stage charges the highest possible acceptable price to the losing
bidder. On the other hand, if the losing bidder were to obtain the item through another
auction held by the seller, the bidder would pay a lower price, as, in that auction, he would

not bid as high as his valuation.

Several variations of the second-chance offer have been studied. In particular, Salmon and
Wilson [Salmon and Wilson 06] study the problem when the second stage consists of an
offer that inverts the known symmetric bidder strategy (including one that anticipates the
second-chance offer). They find that the only existing Nash equilibria for two bidders are
mixed-strategy equilibria. Joshi et al [Joshi, Sun and Vora 05] find that, when the number
of bidders is greater than twice the number of available items, equilibria exist such that
bidders lower their bids in anticipation. These observations lead naturally to the question of
whether the seller can improve his revenue by randomizing the second-chance offer — that
is, by not being predictable enough for the bidder to lower his bid substantially. This paper
addresses a game, similar to the second-chance offer but more general, where the seller

randomizes the second-chance.
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A two-stage game is played betwaehidders and one seller. In the first stage, all bidders
enter a sealed-bid, private-value, first-price auction, and one item is sold. After the first
stage is over, all non-winning bidders enter the second stagelforems identical to the

one sold in the first stage. In this stage, the seller makes a second chance offer with
probabilitya, or a fixed-priced offer?, with probabilityl—a. Bidders accept any offer that

is not greater than valuation. The dissertation demonstrates that analytic techniques, which
assume monotonic increasing bidding strategies, do not provide complete solutions to the
game. That is, standard analytic techniques do not provide the seller and bidder strategies in
equilibrium. Without the assumption of monotonic increasing strategies, it is not possible to
present a simple expression for the bidder's optimization criterion, and the problem is
essentially one of trying all possible bidder strategies for all possible valuations for the
other bidders, to determine the optimal bidding strategy in the game. Genetic algorithms
are hence used to solve the two-stage game model and determine the equilibrium strategies
for both bidders and sellers. Two-population genetic algorithm (GA) experiments are
conducted where bidders and sellers form the two populations. When the population

converges, we have obtained near Nash equilibria.

The results of the GA experiments demonstrate that when the first-price auction is adopted
in the first stage, and items are scarce —that is, less than or equal to half of the number of
bidders k < 4 when n = 8)—optimal bidding strategies are monotonic increasing.
Otherwise, the strategies are not monotonic increasing. Further, item scarcity motivates
bidders to bid high, and price discriminatian% 1) is an optimal seller strategy when

items are scarce. When the second-price auction is adopted in the first stage, the results
4
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indicate that it is optimal for sellers to always price discriminate, regardless of item

scarcity.

In the following sections, we describe the model and the contributions of this dissertation in

more detail.

1.2 The Model

There aren bidders and one seller in the two-stage game. In stage [, all bidders enter an
auction in which the bidder with the highest bid wins the object at the value of the highest
bid. In stage II, the seller makes a second chance offer to all non-winning bidders from
stage |. Each bidderhias a different valuatiow, which is the highest she is willing to pay;

we assume each is independently and identically uniformly distributed in [0,1]. The goal
for all bidders is to maximize the expected value of their payoff, whigh-idy for the
winning bidder, and zero for all other bidders. The seller’'s goal is to maximize the expected

value of its revenue, which is the value of the winning bid.

Bidders’ valuations may be viewed as their private information. Bids in stage | reveal the
valuations, and this information is later used against bidders, resulting in a lower payoff.
Therefore, the second-chance offer is a fornpfacy-infringement Rational bidders
change their bidding strategy in response to such privacy infringement, by bidding low in
stage 1]Joshi, Sun and Vora 05jvhich is not part of this dissertation, shows that the seller
does not benefit from a deterministic strategy if the bidders know it beforehand, as bidders

will bid very low in order to make up for the payoff loss of the second-chance offer. Thus
5
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there is no incentive for the seller to price discriminate with certainty, and a simple rational
strategy provides privacy protection to the bidder in such a case. IfpJ&stti, Sun and

Vora 05] shows that rational behavior provides very strong protection of the payoff, and is
preferable to cryptographic protection. It shows that rational bidding by intelligent agents
without cryptographic protection yields the highest bidder payoff and the lowest total
revenue for sellers — in comparison to mechanisms where cryptographic protection is used,
without rational behavior. The intelligent bidding agent also allows bidders with low
valuation to signal their valuations to the seller, which reduces the opportunity loss for

sellers’ total revenue.

1.3 Contributions and Findings

While closed-form solutions exist for several single-stage auctions — among them first and
second-price sealed-bid auctions — the addition of a second stage that is dependent on the
first one makes the problem more difficult. This work is the first to examine:

= arandomized seller strategy in an auction, and its impact on bidder privacy

= privacy games without explicit closed-form solutions.

The contributions of this dissertation are as follows.
= |t proposes a quantitative model of privacy based on a game-theoretic approach,
and applies the model to the specific problem of the second-chance offer on eBay.
= |t obtains near-Nash equilibrium results for a general game similar to the second-
chance offer, where the seller’s strategy is randomized. In particular, it obtains

solutions when the first stage is a first or second price auction.
6

www.manaraa.com



= |t presents an approach for obtaining solutions when standard Bayesian analysis
does not provide a solution, and when standard assumptions on the monotonic-
increasing nature of the bidding strategies do not hold. It allows us to obtain pure as
well as mixed bidding strategies in auctions when analytical approaches do not
provide solutions.

= This dissertation applies its results to real data obtained from eBay to demonstrate
the efficacy of the proposed techniques. The results with real data also demonstrate
the use of rationality as privacy protection.

= An automatic bidding tool that determines optimal bidding strategy has also been

developed.

The results of this dissertation indicate that whether randomized or deterministic strategies
are optimal for the seller depends on the auction mechanism used, and, when the first-price
auction is used, also on the scarcity of items ( that is, on the relationgrgmah). When

the first stage of the game is a first-price auction, we have found that bidders do not
penalize a privacy-infringing seller as much when fewer items are available and valuations
are distributed as is standard in theoretical auction models, uniformly in [0, 1]. This is
because competition among bidders for fewer items motivates the bidder to bid higher.
Thus, when items are scarce, rational behavior does not provide sufficient privacy
protection. However, when we examine the case of real valuation distributions estimated
from eBay data, as well as uniformly distributed between the highest and lowest valuations

estimated from eBay data, with the second-price auction in stage [, the results indicate that
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it is always optimal for sellers to price discriminate—that is, use the privacy infringing

option in stage II. This result holds regardless of item scarcity.

This dissertation is organized as follows: Chapter 2 contains related work, Chapter 3
presents our model. Chapter 4 presents the Bayesian analysis, and Chapter 5 presents
genetic algorithm simulations assuming bidder valuations are distributed uniformly.
Chapter 6 presents results using real eBay data to determine the valuation distribution, and
the bidding tool implementation. Chapter 7 contains conclusions and directions for future

research.
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CHAPTER 2: RELATED WORK

There are four major research areas that are related to our work. First, our work views
privacy as a game of information revelation; hence the first area related to our work studies
how individuals view their privacy, and how dynamic pricing affects their decisions to
reveal information, because price discrimination can be viewed as a form of privacy
invasion. This research area explores the economic aspects of personal privacy. We

describe it in further detail in section 2.1.

Second, our work models privacy as information revelation in a two-stage game that
includes the first-price or second-price auctions. It is a game of incomplete information,
and players strategically signal their valuation to maximize payoff. We describe research
on relevant game-theoretic aspects of auctions and games of incomplete information in
section 2.2. Third, our work looks at the specific privacy game of the second chance offer.
We describe work related to the second-chance offer in sections 2.3 and 2.4. In section 2.3,
we discuss a deterministic model that is similar to our two-stage game. The only difference
is that, in the deterministic model, sellers’ action to price discriminate in certain. Our two-
stage game can be viewed as a generalization of the deterministic model. In section 2.4, we
describe research on a randomized strategy for privacy. These two sections explore various
models that can be considered as variations of our model, which generalizes them. We
describe various well-known optimization methods in section 2.5, which are typically used

to obtain optimal strategies.
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Finally, when examining optimal strategies in our two-stage game of incomplete
information, we adopt the evolutionary programming method, also called genetic
algorithms, and conduct experiments to obtain equilibria. The fourth related research area,
of using genetic algorithms to solve economic problems, as well as some other applications

of genetic algorithms, are described in section 2.6.

2.1Personal Privacy and Dynamic Pricing

There is a great deal of work related to the economic aspects of personal privacy, for
example, [Laudon 96] [Acquisti, Dingledine and Syverson 03] [Ackerman, Cranor and
Reagle 99] [Acquisti and Grossklags 04]. Varian [Varian 96] was perhaps the first to
propose that privacy be treated as an individual’s right to property, where personal data
forms property. In this framework, private information can be traded, sold or exchanged
through market mechanisms. Varian also pointed out that once a consumer’s private
information is sold to a third party, no control is left for the original parties of the
transaction. Varian concluded that to complete the framework of treating privacy as
property rights, it is necessary to have legislations to regulate the secondary usage of

privacy; it must have the consent of the original party.

Acquisti applied psychology and behavioral economics to analyze whether consumers
make rational decisions regarding their privacy [Acquisti 04]. Acquisti introduces the idea

of “immediate gratification= consumers have self-control problems and lean towards
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obtaining immediate compensation without considering the long-term effect of their
decisions. Acquisti also noted that the “rational privacy” model, in which the agent is
assumed to have rationality and unbounded computational power, does not hold because of
such psychological distortion. Those consumers who claim to value their privacy do not
demonstrate this in their actions. In conclusion, Acquisti recognized the need to develop
software tools, policies and government regulations to help consumers to make rational

decisions regarding their privacy.

In addition, Acquisti and Varian examined whether it is profitable for a firm to perform

first-degree price discrimination, i.e. condition prices based on purchase history [Acquisti
and Varian 01]. In their analyses, it is shown that first-degree price discrimination is only
profitable when there are a large number of uninformed consumers or when a firm can
provide additional services for different value consumers. Acquisti and Varian classified
consumers into two types: those with low values, and those with high values. They point
out that price discrimination is achievable if the seller’'s additions are such that either

consumers do not switch types, or only low value types switch to high value types.

On the topic of dynamic pricing, Odlyzko pointed out that the seller will try to extract
additional revenue if it is aware of the consumer’s willingness to pay more for the same
goods [Odlyzko 03]. This happened in the railroad industry in tRecé8tury, as well as

on e-commerce site Amazon.com in the® 2&ntury. However, price discrimination
requires a delicate balance because consumers resent obvious forms of price

discrimination, while manufactures prefer it to maximize profit. Odlyzko noted that the
11
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requirement for balance results in a form of mild, stealthy price discrimination, such as
product bundles, with the help of tools such as DRM (Digital Rights Management) to

reduce consumer resentment as much as possible.

Odlyzko’s work points out an important problem: when privacy protection only benefits
consumers, vendors do not have any incentives to provide such protection. On the other
hand, if privacy protection also benefits the seller, the seller will be motivated to provide

the protection.

2.2 Auctions and Strategic Signaling

An auction is a widely-used pricing mechanism used for the allocation of goods
[Klemperer 04] [Menezes and Monteiro 05]. McAfee and McMillan have summarized real
world examples, auction theory development and types of auctions used [McAfee and
McMillan 87]. There are four types of auctions: the English auction, the Dutch auction, the

first-price sealed-bid auction and the second-price sealed-bid auction.

In an English auction, buyers continuously raise the price until there is only one buyer left.
The winner pays the highest current bid. The English auction is also knownogethery
auction because the current bid is always revealed to all participants. In a Dutch auction,
the seller announces the initial price and keeps lowering the price until one buyer accepts it.
In a first-price sealed-bid auction, all the bidders simultaneously submit their sealed bids to

the seller; the highest bidder wins the item and pays its submitted bid. Similarly, in a
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second-price sealed-bid auction, all the bidders simultaneously submit their sealed beds; the

highest bidder obtains the item, but pays the second-highest submitted bid.

The second-price sealed-bid auction is also known as the Vickrey auction, and was first
theoretically analyzed by William Vickrey in 1961. In his attempt to theoretically analyze
market mechanisms, Vickrey proposed an auction mechanism to sell the item to the highest
bidder at the value of the second highest bid [Vickrey 61]. Vickrey auctions result in some
nice properties — for example, the weakly dominant strategy is to bid one’s true valuation,
because one’s bid only determines whether one loses or wins this auction. This yields an
expected revenue (for the seller) that is equivalent to that of the English auction, and the

auction is strategically equivalent to the Dutch auction.

Despite all the nice theoretical properties of Vickrey auctions, Vickrey auctions are used
only rarely [Rothkopf, Teisberg and Kahn 90] [Lucking-Reiley 00]. Rothkopf observed
that this is because the bidders fear that, if bid-takers use the information revealed by the
bids in a future interaction, this could be of disadvantage to the bidder. This observation
has inspired our work to model information revelation as a multi-stage game, because it is
realistic for bidders to encounter one another again in practice. Dominant strategies derived

from one-shot game assumptions do not reflect this valid concern.

McAfee and McMillan noted that a number of variant forms of these four auctions are
commonly used in the real world, such as while imposing a “reserved price”, charging an

entry fee, and offering limited time to submit bids, etc. McAfee and McMillan further
13
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proved that these four auctions yield identical expected revenue for the seller, i.e. they
proved the “revenue equivalence theorem”. McAfee and McMillan also included the U.S.

Treasury bonds auctions as real world examples. Discriminatory auctions and uniform-
priced auctions are both used; however, discriminatory auctions are used to sell relatively
shorter-term bonds while uniform-priced auctions are used to sell long-term bonds. It is
also important to note that U.S. Treasury bond auctions are common-value auctions,

meaning information of the bond value is publicly available.

In another paper, Milgrom compared the four different types of auetlmmsEnglish
auction, the Dutch auction, the first-price sealed bid auction and the second-price sealed bid
auction-and concluded that the English auction is popular because of the low participating
costs and the sealed-bid auction has the risk of the seller inserting fake bids to raise the
final price [Milgrom 89]. . Based on Milgrom’s paper, various cryptographic auction

schemes with a third party as the auctioneer are proposed.

In addition to auctions, strategic signaling is also relevant to our work. Crawford and Sobel
proposed one of the first strategic communication models of the sender and receiver game
[Crawford and Sobel 82]. The sender has private informatpwhich is drawn by nature

and not known to the receiver. The sender sends a costless, non-verifiable message to the
receiver. The receiver acts according to the message and its action determines the payoff
for both sender and receiver. This model is also called “cheap talk” because the

communication is costless. Crawford and Sobel also showed that there is no equilibrium
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that does not contain a noisy message unless the sender and receiver have identical utility
functions. In other words, revealing the whole truth is not optimal for the sender if its
interest differs from that of the receiver. Crawford and Sobel then characterized another

solution set as “partition equlibria”, where the optimal strategy is to send a noisy message.

The problem we consider— that of finding a balance between consumer privacy and seller
revenue — is similar to a generalized sender-receiver game, where more than two players

are involved, with different interests in mind.

2.3 The Deterministic Model

In [Joshi, Sun and Vora 05], the deterministic version of the two-stage game very similar to
that described in chapter 3 is studied. In Stage Il, the seller either chooses the price-
discrimination offer option with probability one, or has another auction to sell the other
items. For a seller with identical objects; there are different mechanisms, including the
second chance offer, that offer various degrees of privacy protection to the bidder. To
compare the impact of these mechanisms on the bidder, the authors define the privacy cost
as the payoff difference between different mechanisms for identical items. They present the

payoff differences among various cases as depicted in Table 2-1.:
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Table 2-1: Payoff Difference Comparison

Case Zero

This is the baseline case where all the objects are sa
consecutive, independent auctions. The privacy costs of (

B-D are defined wrt this case.

Id in

Cases

Case A

Bids and corresponding identities are all known to the s¢
After the auction, the seller provides a second chance offer
the bidders that didn’t win the object. Bidders are naive, an
as though there is no second chance offer. This is expec

roughly correspond to current bidding on eBay.

oller.

to all

d bid

ted to

Case B

The same as case A except bidders are strategic.

corresponds to bidder behavior if rational agents were avalil

This

able.

Case C

Only the bids are known to the seller, not the correspon
identities. The seller can only contact bidders as a group

hence with a fixed price offer).

ding

(and

Case D

The seller only knows the final highest price and can

contact bidders as a group with a fixed price offer.

pnly

= Case B corresponds to the use of intelligent bidding agents.

Cases B, C and D represent different kinds of assistance that may be provided a bidder:

= Case C corresponds to the use of anonymity technology, which destroys any

link between a bidder and its bid. Though individual bids are known, the
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bidder corresponding to the bid is anonymous in the set of all bidders
participating in the auction.
= Case D corresponds to the use of both: anonymity and bid secrecy technology,
which does not provide information on losing bids to the seller.
For the seller, Cases C and D correspond to different levels of information on individual
bidders and bids:
= In Case C, the seller can optimize its fixed price offer with the knowledge of
all the bids.
= In Case D, the seller can only estimate a best fixed price offer based on an
assumption of, say, uniformly distributed valuations, and make an offer equal

to the midpoint of the highest bid.

The authors found that the seller’s total revenue in case C is the same or larger than that in
case D. Also, case A generates the highest revenue for the seller; and, interestingly, case B
generates the lowest revenue and highest bidder payoff. Tthat isse of intelligent agents

is more beneficial for bidder privacy protection than the use of cryptograpteyauthors

also found that this difference is pronounced for low valuation bidders. This is because
intelligent agents allow the bidder to signal a low valuation to the seller, while
cryptographic technology does not provide the option of doing so, and creates an
opportunity loss when low valuation bidders are not able to signal their inability to buy at

an average fixed price.
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The above findings are not the contribution of this dissertation; these are included as related
work because of their relevance to this dissertation: a generalization of the above game, to
the two-stage game with probabilistic actions in stage Il. While these findings demonstrate
that it is not beneficial for the seller to price discriminate with certainty if the bidder is
rational, this dissertation examines the consequences of the randomization of seller

strategy.

2.4 Randomized Strategies for Privacy

In a paper that follows the first use of randomization in the second-chance offer, a
contribution of this dissertation, [Joshi, Sun and Vora 08] examined a multiple-buyer game
with two stages. In stage one, all buyers submit a sealed-bid in response to a declaration of
pricing rules by the seller. In stage two, the seller makes a take-it-or-leave-it offer to the
buyer with the largest signal; this value need not be equal to the signal. The authors show
that, if the seller breaks the rules and price discriminates with certainty, the buyers reveal
no information, but that, if the seller breaks the rules with a probability smaller than one,
buyers reveal information in signals that increase seller revenue. This work does not,
however, correspond directly to eBay's second chance offer, where seller's are only

allowed to charge a bid in the second stage, and not any other value.

Salmon and Wilson studied a similar game, the English-Ultimatum game, where the first
stage consists of a first price auction, and the second stage consists of a take-it-or-leave-it

offer [Salmon and Wilson 06]. The authors showed that there is only a mixed-strategy
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equilibrium in a 2-item-2-bidder, English-Ultimatum game. The differences between their
model and ours are as follows:

1. In the English-Ultimatum game, the seller always chooses to price discriminate in
the second stage, while our model allows sellers to choose between price
discrimination and uniform-price offers.

2. In the second stage, the English-Ultimatum game allows the seller to make an
offer that is different from the failed bids obtained from stage one, while our
model does not allow such a change.

3. Salmon and Wilson examines a mixed strategy for bidders while we examine the
randomized strategy for sellers.

4. Our model is for any number of bidders.

The sender-and-receiver game studied first by Crawford and Sobel also addresses informed
and uninformed players [Crawford and Sobel 82]. The sender is the informed player and
the receiver is the uninformed player. The game is played as follows: nature chooses the
sender’s type first, the sender chooses a message and the receiver chooses an action
afterwards. The payoff of both players is affected by the actions/messages they chose. This
is different from the problem we address, because, in our problem, bidders are the
uninformed players and move first. Further, in Crawford and Sobel game, utility function

of the sender is non-zero if the receiver takes an action that is greater than the sender’s
secret. In our problem, the utility function is zero if the receiver (seller) takes an action

(makes an offer) that is greater than the sender’s secret (bidder valuation).
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2.5 Optimization Methods
In this section we discuss some standard optimization techniques that are typically used to

solve games as well as for other applications.

2.5.1 Deterministic Line Search

Steepest descent is an old optimization technique that can be applied to continuous and
differentiable functions. It was first proposed by Cauchy in 1874. It is an iterative process
to choose a starting point and a neighbor point that the function decreases most quickly
based on the first derivative [Chong and Zak 96]. Newton-Raphson method is similar to
steepest descent because it also chooses a starting point and the neighbor point. The
difference is that the choosing Newton-Raphson method chooses the next point based on
both the first and second derivatives [Chong and Zak 96]. Line search methods have similar
flow: (1) initialize a starting point, (2) determine a direction, (3) compute the distance to
move towards that direction, (4) move to the new target point and check whether it reaches

optimum, (5) repeat from (1) if it's not optimum.

Comparing the two methods, it can be observed that steepest descent generally has a more
rapid convergence in the beginning because it uses first-order derivative, but Newton-
Raphson method has a more rapid convergence at the end of the process. A hybrid method
can adopt both by implementing the steepest descent at the start and finishing up the

optimization process with the Newton.
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2.5.2 Linear, Nonlinear and Quadratic Programming

Linear, nonlinear and quadratic programming methods are all used to solve constrained
optimization problems. In all 3 methods, there is an objective function and a set of

constraints. The goal is to find a solution that maximizes or minimizes the objective

function and also satisfies the constraints. Linear programming has an objective function
and a set of constraints that are both linear. Similarly, quadratic programming method has
an objective function that is quadratic (squared variables) and a set of linear constraints.
Nonlinear programming is used to solve a nonlinear objective function and a set of

constraints. If the constraints are linear, it is called “linearly constrained optimization”.

The simplex method is commonly used to solve linear programming problems. It requires
the set of constraints to be written in matrix form [Chong and Zak 96]. It finds a feasible
solution by computing the inverse matrix and gradually moves from a feasible solution to
an optimal solution by finding an adjacent solution with better value (higher if maximizing,

lower if minimizing) of the objective function.

In a nonlinear programming problem, if the objective function is convex and the set of
constraints is a convex set, convex optimization method can be used. One of the convex
optimization methods is based on the Lagrange multiplier theorem. Instead of matrix
operations, it uses the derivatives of the objective function [Chong and Zak 96]. The

guadratic programming problem can also be solved by convex optimization method.
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2.5.3 Random Search

Simulated Annealing was first proposed by Metropolis et al [Metropolis 53] in 1953. Itis a
method combining deterministic local search and probabilistic moves to reach a global
optimum; at each point, the process makes a probabilistic decision of whether to stay at the
current point in the deterministic search algorithm, or to move to another point. This
prevents deterministic search algorithms, such as steepest descent, from getting ““stuck” in
local optima. Genetic algorithms are also categorized as optimization techniques based on
random search, and mimic how nature is believed to reach equilibria. We describe the

genetic algorithm in detail in the next section.

2.6 The Genetic Algorithm

The genetic algorithm was first introduced by Holland and Goldberg [Holland 75] [Holland
92] [Goldberg 88]. It is based on Darwinian natural evolution theory: the growth of animals

is mainly controlled by their genes, inherited from their parents. Instead of reproducing the
same genes from one single source, the genes are actually a mix of those of both parents,

with possible random changes, known as mutation.

Adopting the biological model of evolution, solutions in genetic algorithms are coded as
chromosomesSimilar to the notion of the survival of the fittest in Darwinian theory, a
fitness functiondetermines survival in genetic algorithms. This could be an objective
function or a subjective function defined by human decisions. Genetic algorithms are
iterative algorithms, and possible solutions are iteratively selected or rejected based on their

fitness. Beginning with a first set of possible solutions, pairs of accepted solutions generate
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solutions for the next iteration, usingpssoverandmutation This process is repeated until

good enough chromosomes are created, or time runs out.

Selection is crucial in the genetic algorithm because it decides how to obtain more copies
from the better solutions. There are several different ways of performing selection: roulette
wheel selection, tournament selection and truncation selection. Chromosomes with higher
fitness scores will have a higher percentage in the roulette wheel selection. In the
tournament selection, the algorithm will randomly pick any two (or more) chromosomes,
compare fitness scores, and keep the best one. The truncation method is the most trivial

one; it doubles the better half population and truncates the other half.

The cross over function mimics the biological reproduction process. It combines bits from
good parents generated by the previous selection function. There are two methods for cross
over: one point cross over and two points cross over. For a one-point crossover, the
algorithm first randomly picks a point in the bit strings. All bits before that point are from
one parent and all bits after that point are from the other parent. Two point cross over

works similarly.

Mutation provides variation that is needed in the genetic algorithm to prevent it from being
limited by its first (randomly chosen) set of solutions. One bit in the chromosome bit string
is randomly flipped. Mutation can also be viewed as a random walk away from the original

chromosome. Because mutation causes variation, global optimization can be achieved.
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There are other algorithms adopted from the power of nature, such as observing how ants

alter their path to build the shortest path finding algorithm [Dorigo 92].

In our model, the genetic algorithm scheme is used to find Bayesian-Nash equilibria among
sellers and bidders in a multi-stage game of incomplete information. From an evolutionary
game theory point of view, the survived strategies result in mutual best responses for all the
players because the strategies with lower utility are eliminated during the evolving process;
therefore, the Bayesian-Nash equilibria obtained from our experiments are also

evolutionary-stable.

2.7 Applications of Genetic Algorithms to Problems in Economics

There have been several applications of genetic algorithms to the solution of economic
problems. One application is mechanism design and evaluation. Cliff adopted the genetic
algorithm approach to investigate an optimal mechanism for an online auction trading
environment [CIiff 03] [Cliff 06] [Walia, Byde and CIiff 03]. Cliff discovered a hybrid
auction market evolving in his experiments, and noted that software agents can be used in
online auctions, and that current human-developed auctions are not necessarily optimal. .
The hybrid auction market that evolved in his experiments is much more market efficient,
and results in more overall market profit than any human-designed auction mechanisms.
Similarly, Byde adopted genetic algorithms to evaluate various auctions including first-
price and second-price sealed-bid auctions [Byde 03], and demonstrated the evolution of a
hybrid mechanism. It is important to note that Byde established that the GA-based solution

is optimal regardless of whether it is a human-trading market or an agent-based trading
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market. Byde also noted that the advantage of the genetic-algorithm-based approach is that
not-theoretically-analyzable factors can be taken into consideration during the simulation
process through the use of evolution. Similar to our approach, Byde used a 1-to-1 mapping
table to represent the bidding strategy where the entry of the table is the bidders’ valuation,

and the outcome of the lookup table is the bid.

Genetic algorithms have also been applied to well-established problems in economics, such
as the prisoner’s dilemma, auctions, the cobweb model and other microeconomic problems
[Riechmann 01] [Dawid 96] [Dawid 99]. In the prisoner's dilemma, defection is the
dominant strategy if the game is only played once. Alexrod studied the iterated prisoner’s
dilemma (IPD) game with genetic algorithms [Alexrod 87]. In his experiments, each player
has a chromosome consisting of three previous moves: a player chooses either cooperation
or defection and there are four possible outcomes for each move. It is shown that the
optimal strategies that evolved from the experiments have similar properties as TIT FOR
TAT [Alexrod 84], a strategy submitted by Anatol Rapoport in a previous IPD strategy
contest. Axelrod concluded that the genetic algorithm is an effective optimization technique

in a large problem space.

Andreoni and Miller conducted genetic algorithm experiments to explain the anomaly of
human auctions [Andreoni and Miller 95]. The bidders gradually learn the optimal strategy
by evolving. Andreoni and Miller examined the evolved strategies in common value
auctions, affiliated private value auctions and independent private value auctions over a

period of 1,000 generations. Each generation consists of twenty rounds of auctions and the
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fitness function is defined as the total profit over twenty rounds. Andreoni and Miller also
examined experiments with settings of 8 bidders and 4 bidders. Andreoni and Miller
concluded that bidders in the experiments did reach Nash equilibrium in the common
value, first price auctions. Andreoni and Miller noted it is relatively difficult to converge to

equilibrium in auctions because of poor feedback in the auction environment.

The cobweb model is mostly used to describe the supply and demand equilibrium in
agricultural market. Different from other markets, it takes a significant period of time for
crops to grow; therefore farmers need to estimate the quantity they need to plant based on
their forecast of the market price [Pindyck and Rubinfeld 04]. The cobweb theorem states
that the market price will converge to the intersection of the supply-demand curves, the
equilibrium, after a long period of time. Genetic algorithms have been adopted to conduct
several simulations for different cobweb designs [Arifovic 94] [Franke 98] [Dwaid and
Kopel 98]. Arifovic showed that the genetic algorithm can be used as a decision making
and learning tool to achieve equilibrium price. Arifovic also noted that a GA-based
approach does not require the agents to be intelligent to begin with; instead, an agent can

keep updating its prior beliefs during the process to produce optimal solutions.

Dawid and Kopel also adopted a genetic algorithm approach to study two cobweb models.
In one model the farmer (or firm) decides whether to stay in the market or exit before
deciding the production quantity; while in the other model, the firm can only make
decisions about production quantity [Dawid and Kopel 98]. Dawid and Kopel conducted

simulations with different coding schemes and different designs of fitness functions, and
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discovered, surprisingly, a different result for each coding scheme. While such a finding

indicates that the results cannot be generalized, Dawid and Kopel noted that the genetic
algorithm approach is still useful to analyze economic problems because it always initiates
a heterogeneous population to begin further simulations. A heterogeneous population
represents asymmetric strategies. This is a major advantage over theoretical analysis
because it allows us to examine more complex problems with less constraints and
assumptions, for example, we do not need to assume symmetric strategies for all players in

a game.

In summary, we described four related work areas: economic aspects of personal privacy
and their relationship with price discrimination; the independent auction literature as a one-
shot game and strategic signaling in another multi-stage game; different models that can be
viewed as variation of ours; and well-known optimization methods, as well as applications
of evolutionary programming, a method we use. All four areas are closely related to

different aspects of our model described in Chapter 3.
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CHAPTER 3: THE MODEL

We model a two stage price discrimination game—an auction stage followed by a seller-

offering stage—as follows.

Game Price Discrimination

— Stage I: N bidders join a sealed-bid auction. All bidders simultaneously and
independently make bids. The bidder with the highest bid wins the auction. On the
occurrence of a tie, the winner is chosen at random. The reméalAlngidders enter
Stage Il.

— Stage II: The seller offers an identical item to all the remaining bidders:

(1) The failed bid (privacy-infringing) option:With probability «, the price is the
bidder’s highest bid in Stage I.
(2) Theuniform price(privacy-protecting) optiokVith probability 1-¢, the price is a

uniform price Pfor all bidders. The bidders can reject or accept either offer.

Each bidder’s payoff is calculated as the difference between the price paid for the item and
the bidder’s valuation. In this two-stage game, bidders are seeking to maximize their payoff

and sellers are seeking to maximize their total revenue over stages. There are two different
auction mechanisms used in Stage I: first-price sealed-bid and second-price sealed-bid,

these are described in detail in section 3.2.
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3.1 Notation

We follow the notation of Krishna [Krishna 02] and denote the private valuatiantbg
bid byb, the payoff byl1, and the expectation operator Bly] . B(x) is the optimal bidding
function. G(x) denotes the probability that a given valuatioms the highest among
bidders;g(x) denotes its derivativéd(x) denotes the probability that a given valuatias
among the highedt ones, but is not the highesi(x) denotes its derivativé denotes the
uniform-price offer made in Stage II, afithe revenuex andb; denote thé™ highest

valuations and bids respectively.

3.2 Stage |

Stage | may be a first or second price sealed-bid auction.

3.2.1 First-Price Sealed Bid Auction

In Stage |, if a first-price sealed bid auction is adopted, the winner pays its bid. A bidder’s

expected payoff is written as

Bl = & 3(x- B+ H(X¥[a(x-b)+1-a)(x-P)]

3.2.2 Second-Price Sealed Bid Auction
In Stage |, if a second-price sealed-bid auction is used, the winner pays the second highest

bid. A bidder’s expected payoff is written as

X

| bo y)dy

HIIl = G(X)(X—OG—) + H(Y[a(x=b) + A -a)(x-P)]
(x)
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where G(x)denotes the probability that a given valuatios the highest valuation among

X

bg y)d
bidders,!"::(%/ denotes the expected value of the second highest bidder’s bid(>gnd
denotes the probability that a given valuatiols among the highe&tvaluations, but not
the highest. If the number of available items is less than the number of remaining bidders
and the seller chooses to price discriminate, only the highkdiidders receive an offer,
where k-1 is the number of available items. If the seller chooses otherwise, the seller
provides the uniform-price offer to aill bidders, bidders then notify the seller whether

the offer is rejected or accepted. The seller randomly sétddsdders among those who

accept the uniform-price offer.

3.3 Assumptions

We make the following assumptions:

1. xis independent and identically distributed with a uniform distribution over interval
[0, 1] , with cumulative distribution functioR, and the corresponding probability

distribution functiorf. Hence,

Q) =[FOOI™

and
HOH =3 G LRI - Fd)

2. B(x) is monotonic-increasing and identical for all bidders

3. Bidders are risk-neutral.
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4. Bidders reject any offer exceeding valuation

3.4Impact of Stages on Revenue and Payoff

3.4.1 Independent Second-Price Auction

In our model, the second-price auction can be adopted at the first stage in a two-stage
game. The optimal strategy of the bidder in an independent second-price auction is well-
known to be a “truth-revealing” strategy. It is a dominant strategy for the bidder to always
bid its valuation; that is, the bidder cannot make a better payoff with another bidding
strategy, independent of the strategies of other bidders. We briefly describe the reasons for

this strategy.

Suppose, instead of submitting a bjdhe bidder submits biolsuch that:
1. b>x

a. If the highest bid among other bidddps, is such thab’> b, both bids ob
andx result in the same payoff: zero, as the bidder does not win the auction
with either strategy.

b. If b’< x, bothb andx are the highest bids, the bidder wins with either bid,
and makes the same payoff xidependent of the value bof

c. If b > b’™> x the bidder wins the auction in a situation where he would not
have won with bidx. However, in this case, the bidder cannot afford the
item, priced at h’and makes a zero payoff.

2. b<x
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a. If the highest bid among other bidddps, is such thab’> x, both bids ob
andx result in the same payoff: zero, as the bidder does not win the auction
with either strategy.
b. If b’< b, bothb andx are the highest bids, the bidder wins with either bid,
and makes the same payoff xidependent of the value bof
c. If x> Db’> b the bidder loses the auction with licand makes zero payoff.
With bid x, the auction would have been won, with a non-zero payoff x-b’
The objective function for the independent second-price auctichwifor the bidder who
wins, and zero for all other bidders. In an independent second-price auction, the seller's

action is fixeda priori, and the seller does not have an optimization criterion.

3.4.2 Independent First-Price Auction

In our model, the first-price auction can also be adopted at the first stage in a two-stage
game. The optimal strategy of the bidder will depend on the nature of the second stage, and
will, in general, be different from that of the first-price auction played as an independent
game. For the purposes of comparison, and to determine if the seller benefits from the
second stage, we present a brief overview of the well-known results about first-price

auctions played as independent games.

The first-price auction when played as an independent game does not posses a dominant
strategy; its symmetric Nash equilibrium bidding strategy is well known to be the expected

value of the second-highest valuation, conditionallieing the highest one:
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X

[ yG(ydy

By = E[X2|X=X1]:0W

This optimal strategy is obtained by differentiating the expected payoff with respect to the
bid, and then assuming all bidding strategies are identical (for a symmetric equilibrium)
and then setting the derivative to zero to determine an extreme value of the payoff. Finally,
it is shown that, if all other bidders bid according to this strategy, and a single bidder
deviates, the deviating bidder obtains a smaller payoff than it would if it were to follow the

strategy.

Whenf(x) is the uniform distribution,

px=""1x
n

The expected payoff is:

E103] = [ Q(py=—9

and the expected revenue:

ER3) = Hx,]=""1
n+1

The objective function for the bidder in an independent first-price auction is

G (D)(x~ B(x).
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3.4.3 Two Stage Model
We further analyze the objective functions for both the seller and the bidder in a two stage
game. The seller’'s goal is always to optimize its total revenue; if Stage | is the first-price

sealed-bid auction, the seller’s objective function can be written as:
k k
R@ ,P.B X%, X,) = b+ ab + ) (1-a)P
i=2 x>P

whereb; = fS(x). If the second-price sealed-bid auction is adopted for Stage |, the seller’s

objective function can be written as:

Re P, X . %,..X,) = b, +Zk:ab, +Zk:(1—a)P

For the bidder, if the first-price sealed-bid auction is adopted in Stage I, payoff can be

written as:

*x b if winsal ststage
IMe,PA,%X,%,.X)=1 X[ld Bl-a) P if winsaf ndstage
0 otherwise

If the second-price sealed-bid auction is adopted at Stage |, bidder payoff can be written as:

x b if winsal ststage
IIe,PA %X, %,.X)=1 X[ld Bl-a) P if winsaf ndstage
0 otherwise

To obtain the average payoff, we can sum up the payoff function over all possible

combinations ok;, b. In summary, the bidder’s objective function can be written as:
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E:H @1 Pfaest! ngtlxllxz""xn)] = Z Q@ ' Pﬂest' ngt'xl'xz""xn)

allpossible(x ,%,...X,)

And the seller’s objective function can be written as:

E[R@ ' I:)’aest’ ngt’X.UXZ"“Xn)] = Z R@ ’Pﬂest’BSt’)GJXZ’“'Xn)

allpossibléx %, ,..X;)

To find the Nash equilibrium, we have to optimize the bidder's objective function

Z Qe ,P.A,%.,%,..X,) given («,P) because the bidder does not have knowledge

allpossible(x ,%,...X,)

of the seller's movea,P) while submitting the bid. We also have to optimize the

objective function Z Re ,P.A,X.%,..X,) given g for the seller because the bids
allpossibléx %, ,..X;)

are submitted based on the bidder’'s estimate of the seller's move.
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CHAPTER 4: BAYESIAN ANALYSIS

In this chapter we present the Bayesian analysis performed by us to obtain the optimal
bidding strategy in some cases. We also present the results of genetic programming
simulations to solve for the Bayesian Nash equilibria. Before we provide our results, we

first review the independent first-price auction.

4.1 Bayesian Nash Equilibrium—TFirst-Price Auction at Stage |
This dissertation examines the following two cases when the first-price auction is adopted
at the first stage:
Case .o andP represent the reputation of the seller and are known to the didder.
identical items are available.
Case Il:a andP form the seller's second-mover strategy and are unknown to the
bidder.k identical items are available
4.1.1 Casel
Consider a simplified version of the game, where the bidder knows the sellers’ values of
the probabilitya and the uniform pric® prior to the start of the auction. This may be
thought of as a steady state setting in a repeated game, where the seller has chosen optimal
values ofa and P, and the bidder has learnt them over repeated interactiozsd P
represent the reputation of the seller, and we may consider them as representing the
distribution on the type of the seller. Just as the distribution on the bidder’s valuation is

known to the seller, so also the parameteés known to the bidder, along with. The
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bidders submit bids in the first stage, and, after the auction ends, the system flips a coin,
biased according to the value @fto choose between the uniform price option and the
failed bid option. The result of the coin flip may be viewed as the type of the seller — much
as the valuation represents the type of the bidder — and is similarly unknavpniori, to

the other players.

Theorem 1: There is no dominant deterministic strategy for all bidders in the Game Price
Discrimination when the first-price auction is adopted at the first stage.

Proof. Consider the strategy of bidding zero. It is a strongly dominant strategy (that is, its
payoff is strictly greater than that of any other strategy) for non-highest-bid bidders who do
not win Stage |, as the payoff is strictly greater than any other if the seller price
discriminates in Stage Il, and the payoff is the same as any non-zero bid if the seller offers
a uniform-price instead. However, for the highest bidder, if all other bids are small enough
(what is small enough dependsmandP), a greater payoff is obtained by bidding higher
than all other bids and winning Stage | rather than bidding zero and risking paying P in
Stage Il. This is not as good as bidding zero for the non-highest bidders. Therefore, there is

no dominant deterministic strategy for the bidder.

Assuming the bidder uses a symmetric Bayesian Nash equilibrium strategy, following
Krishna’s notation [Krishna 02], for bidders with valuation higher tRamhe expected

payoff for bidb and valuatiorx is as follows:
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Ell = @A (D)( % B+ H(B(D)[a(x-b) + L - a)(x-P)]

k=1
where G(X) = x"* and H(® =Y G"'x""*(1-x)'
i=1
H(x) is the probability for valuation to be among th& highest ones but not the highest

one. Otherwise, if valuatianis less than fixed pride, the expected payoff is

Bl = G (D x B+ HA (D) a(x-Db)]
Differentiating both equations wti, and equating to zero gives the following optimal
bidding strategies as equation (1). See appendix A for detailed steps and a proof that shows

it is a symmetric Nash equilibrium strategy.

Theorem 2:
[ Y&y dyraf yH (y)dy+ @1-a)[(y- P H(y)dy
G(X) + aH (X) x>P
BX) =1 § (1)
[ y& ydy+af yH(y)dy
0 g else
G(X) + aH (X)

is a Bayesian Nash equilibrium for Game Price Discrimination if G(xH¢x) =0, f(x)> 0

and monotonic increasing. Pro@&ee appendix A.

However, f(x) is not always monotonic increasing for alland P. When 5(x) is not
monotonic increasing, it contradicts assumption (2) from section 3.3 and is not an invertible

strategy. Therefore, determining the Bayesian strategy by differentiating the expected
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payoff function does not provide a solution f&(x). We cannot use it to compute the
revenue for each value ofandP to determine the optimaland Pfor the seller. We hence

need an alternate approach to determine the equilibrium seller strategy, and the
corresponding bidder strategy. In particular, we need an approach that does not require the

bidding strategy to be monotonic increasing.

4.1.2 Casell

In a less constrained situation, the two-stage game would be played sequentially, with the
seller moving later than the bidders. That is, the seller would determine the valuesdof

P after receiving all the submitted bids. Further, again, the bidding strategy need not be

monotonic increasing.

As closed form expressions for the payoff for arbitrary (non-monotonic increasing)
strategies do not exist, we use genetic algorithm simulations to examine arbitrary bidding
strategies. Based on the analysis of objective functions in section 3.4.3, we can see that the
two objective functions for bidders and sellers depend on each other. The optimization
methods we studied in chapter 2 including deterministic search, linear programming and
guadratic programming do not provide a good fit for such problems. The next class of
optimization techniques is heuristic search method including neural network, simulated
annealing and genetic algorithms. We choose genetic algorithms and map bidders and
sellers to two populations that evolve together. The bidding strategy is not assumed to be
monotonic increasing. It is assumed tiBak f(x) < x. Becauseff is not necessarily

monotonic increasing, it is possible that a bidder with a lower bid might be able to pay the
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fixed-price for the object while a bidder with a higher bid might not. Hence the fixed-price
offer in Stage Il, made with probabilifiy-a, is made not only to thie-1 highest bidders,

but to all bidders. A randork—1 are chosen from all bidders who accept the fixed price
offer. The solution space of player strategies is expected to be large, as the bidding strategy

is not constrained to a particular form.

When bidding strategies are not monotonic increasing, there is no straightforward formula

for the probability of winning, as it is not straightforward to characterize the distribution of
the other bids; hence, for example, the probability of winning wittbligdnot G (3™ b))

as in section 3.4.2 This further implies that the only formula for expressing the expected

payoff is to provide an average over all possible valuations of the other bidders:

> (x=B0))+ D a(x=pB(¥)+
L(X)>4(%),%<[01] £ ( xmaxp( ; XB( )x amongkl highesbids,x €[01]
(1- a)( x- P)Pr[bidder chosenfor fixed priceoffer] x> P
HII(B(X, ¥)] =
Y (x=B())+ D a(x-B(x) else
B(X)>B(%),%[01] B ( Yamax( i wB( )xamongkl highesbids,x €[01]

We use genetic algorithm (GA) experiments to perform a search over the large solution
space. In the GA experiments, the bidder’s fithess function is payoff, and the seller’s fithess
function is revenue. The bidder’'s chromosomes define its stritegyconstrained except

0 < p(x) < x. Using the GA experiments, the optimal strategies, for bidder and seller, are
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obtained when the chromosomes converge. Our approach and the experimental results are

described in next section and chapter 5.

4.2 Evolutionary Programming to Determine Bayesian Nash Equilibrium
We first examine the case of no scaraity=(k) where bidders follow the Bayesian strategy
in equation (1). In this case, the number of bidders is the same as the number of available

items.

421 Caseln=Kk

First, for the purposes of illustration, consider Case I: when bidders known the values of
and Pand n = k Bidders’ Bayesian strategy becomes equation (2) as in this case, H(x) = 1-
G(x), becausé-G(x)is the probability of that a bidder with valuation is among the highest

k, n = k,bidders but not the highest one. It is a special case of (1). When a1,

P forx=P
1_}.#
Q- a)G(x)
b= A(x) = 2
n-1
—X
n for x< P
1_}.#
Q- a)G(x)

When « = 0, bidders with valuations less thBncan never obtain the item in the second
stage. Low valuation bidders see the first stage as a simple first-price auction. On the other

hand, bidders with valuations greater thawill never bid more thaf® in the first stage
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because they are guaranteed to be able to afford the price in Stage Il. Given this response, it
appears best for the seller to divide the bidders into two sets of roughly equal size, using
P=0.5 (as valuations are uniformly distributed), and to never price discriminate. This is

confirmed in figure 4-1.

Seller's Total Revene

Alpha p

Figure 4-1: Seller’s revenue as a functiorxandP

Figure 4-1 shows the expected revenue computed from equation (2) as a funetemdof

P. The computation assumes uniformly distributed valuatiors20 bidders, and averages
over 10 instances. It is clear that= 0 andP = 0.5 provide the optimal seller reputation,

that is, the reputation at which the seller obtains the highest expected revenue. Note that
= 0 andP = 0.5 provides a higher revenue than= 0 andP = 1, which provides the
revenue of a simple first-price auction. This difference in revenue is largely due to the fact

thatP = 0.5sells more items.
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422 Caselln=k

We now consider the case when the bidders do not know the valuesdP, but learn

them in an evolutionary program, by estimating their values, and bidding according to the
estimates. Good estimates will be passed on to the next generation. The sellers,
simultaneously, through evolution, determine a best value of these parameters. In the
experiment, the chromosomes represent the bidder's estimatearafP for the fithess
functionexpected payqfaind the seller’s values aefandP for the fitness function expected
revenue The bidder’'s chromosome is coded as a pair of real nurataerd P It represents

the bidder’s type, i.e. the bidder’'s assumed values of price discrimination prohaalitgt

the uniform price PThe seller's chromosome is also coded as a pair of real numbacds

P. It represents the seller’s action after Stage | ends.

We stop our simulation when the number of generations is 10,000. The initial population is
set at 100 sellers, and 100 distinct bidders for each seller. Bidder chromosomes are
randomly generated at the beginning of the simulation. Bidder valuations are randomly
generatectach generationThe tournament selection method is used for reproduction: two
chromosomes will be randomly drawn from the population pool. The chromosome with the
higher fitness score will be copied to the new population representing the next generation.
It will stay in the pool for further tournaments, and the process continues until the new
population has the same size as the previous one. The crossover process combines

chromosomes from two parents, at random. The optimal mutation rate is set to be equal to
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1/4 as suggested in [MUhlenbein and Schlierkamp-Voosen 93] because there are 4 different
variables in the seller and bidder chromosomes. We implement the mutation operator

suggested in [Muhlenbein and Schlierkamp-Voosen 93].

In the experiment, we divide the bidders into two groups: low valuation bidders and high
valuation bidders. Group one contains bidders with low valuations, that is, valuations
uniformly distributed between 0 and 0.5; group two contains bidders with high valuations,
that is, valuations uniformly distributed between 0.5 and 1. The mutation rate is 1/4 from
generation 0~5000 and 0.05*(1/4) afterwards. Bidders are assigned a randomly generated

valuation every generation according to their group.

Table 4-1: Experiment Results

Experiment: 100 Bidders
Mean Variance
Sellers’a 0.0 0.0
Seller'sP 0.5101 1.5660e-008
Low Valuation Bidder'sx | 0.4297 0.1188
Low Valuation Bidder's P | 0.4434 0.1125
High Valuation Bidder'sx | 0.5866 0.1096
High Valuation Bidder's P | 0.4155 0.1273
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We find that the population of the seller's chromosome is converged. However, neither the
low valuation bidders’ nor the high valuation bidders’ chromosomes are converged to any

distinct pairs of &, P). Table 4-1 summarizes the results of this experiment.

Figures 4-2 and 4-3 illustrate the bid distributions for high valuation bidders and low
valuation bidders. The high valuation bidders’ bids clearly converge to approximately zero.
The low valuation bidders’ population enters a stable stage since no significant change in
population variance is found over generations. The only explanation for this result is that
two Nash equilibria exist in this two stage game. One is to bid zero and one is to bid their
valuation. The reasons whyad ado not converge are as follows:

= For high valuation bidders: although the bids converge to nearly O, it appears that

many combinations of andP can result in nearly-zero bids.
= For low valuation bidders: because there are two Nash equilbaadP do not

converge.
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Figure 4-2: Distribution of High Valuation Bidder’s Bids
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Figure 4-3. Distribution of Low Valuation Bidder’s Bids
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4.3 Bayesian Nash Equilibrium—Second-Price Auction at Stage |
This dissertation also examines the following two cases when second-price auction is
adopted at the first stageand Prepresent the reputation of the seller and are known to the

bidder.k identical items are available.

Similar to section 4.3, we consider a simplified version of the game, where the bidder
knows the sellers’ values of the probabilityand the uniform pric® prior to the start of

the auction. The only difference is a second-price auction is adopted at Stage I.

Theorem 3: There is no dominant deterministic strategy for all bidders in the Game Price
Discrimination when second-price auction is adopted at the first stage.

Proof. From section 3.4.1, we know that the dominant strategy to win a second-price
auction is to bid up to one’s true valuation. However, the dominant strategy for stage |
results in the worst case at stage Il when a second chance offer is made—with zero payoff.
If the uniform-price is offered at stage Il, the payoff is the same regardless of the bid. We
can see that if a uniform-price offer is made at stage I, it is best to bid up to one’s valuation
at stage | to win the auction, if one’s valuation is befwhich depends on how the seller
moves. However, bidding up to one’s valuation does not result in an optimal outcome if a
second-chance offer is made at stage Il. Therefore, there is no dominant deterministic

strategy exist for this game.
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Assuming the bidder uses a symmetric Bayesian Nash equilibrium strategy, following
Krishna’s notation [Krishna 02], for bidders with valuation higher tRamhe expected
payoff for bidb and valuatiorx is as follows:

[ bG(ydy

HIIl= G(ﬁ’l(b))(x—ow) + H(B (D)[a(x-Db) + (L -a)(x-P)]

k=1
where G(x) = x"* and H(¥ =) C"'x""*(1-x)'
i=1

H(x) is the probability for valuation to be among th& highest ones but not the highest
one. Otherwise, if valuatianis less than fixed pride, the expected payoff is
J bG(ydy
HI1l = G(B7 (D) (X~ *———) + H(B " (B)a(x~b)
G(x)
Differentiating both equations wit, and equating to zero results in partial differentiation

equations from which we are not able to obtain an optimal strategy for gen&eé

appendix B for detailed steps and solutions for spetifind k

Due to the difficulty of obtaining optimal strategies through solving partial differentiation
equations, we conduct genetic algorithm experiments and the results are described in
Chapter 5. It is worth noting that genetic algorithms have shown success in solving partial
differentiation equations as mentioned in [Haupt and Haupt 04]. The genetic algorithm
experiments include the case where this game is played sequentially, as well as the

situation of item scarcity.
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4.4 Summary

We have derived the conditions for injective non-negative strategies in Bayesian Nash
equilibria for a two-stage price discrimination game when the first-price auction is adopted

at stage I. In the absence of item scarcity, we find that rational behavior, even when the
seller's strategy is randomized between price discrimination and fixed-price, provides

benefit to the bidder and is sufficient for privacy protection, as it deters the seller from price

discriminating.

In the next chapter, we examine item scarcity. We also examine the cases when the
conditions under which we have determined the Bayesian Nash equilibria (injective, non-
negative bidding strategies) are not obtained in the results; i.e. when the analytical
approach does not obtain the equilibria, and there is no closed-form solution for it. In order
to consider both cases, when the equilibria are characterized by closed-form solutions and
when they are not, we characterize the bidders through their bidding strategies expressed as
look-up tables, and not through their beliefs abowtnd P, (because even if they had

correctly estimated and Pthey would not have a closed-form bidding strategy).

49

www.manaraa.com



CHAPTER 5: EVOLUTIONARY PROGRAMMING EXPERIMENTS

This chapter presents the detailed process and the results of the evolutionary programming
experiments. Each experiment has various small values avfd k. Experiment set A
adopted the first-price auction at stage I, and a uniform distribution of bidder valuations; for
some values oh andk, results for this problem were also obtained through Bayesian
analysis and are were described in Chapter 4. Due to the possible mixed strategies found in
experiment A, we further conduct experiment B with most general chromosomal
representation and uniform distribution to solve the game with the first-price auction in
stage I. Finally, experiment set C adopted the second-price auction in Stage Il (as would be
the case on eBay), and used both uniformly distributed valuations, as well as valuations
obtained from a real eBay dataset. Detailed results of experiment C are described in chapter

6.

5.1 Simulation Method

The fitness functions are expected payoff and expected revenue for bidder and seller
respectively. The seller's chromosome consists of the valuesodP. In experiment set

A, the bidder's chromosome is coded as a twenty-entry lookup table to represent a pure
bidding strategy. The bidder’s valuation is the index of the lookup table, and the bid is the
content of the corresponding entry. In experiment set B, the bidder's chromosome is coded
as two twenty-entry look up tables, and a probabylityr the first lookup table. The form

of this chromosome is designed to represent a mixed strategy—with probalitiéybid

comes from the first lookup table, otherwise it comes from the second lookup table. In
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experiment set C, the bidder’s chromosome isndsy m matrix. The(i,j)™ element in the
matrix represents the probability that the bid for valuatiail be the valug. Notice that
the chromosome of experiment A is a special case of that of experiment C, and that of

experiment C is a special case of that of experiment B.

5.2 Basic Steps

The stop condition is number of generations equals to 10,000 for experiment set A, and
5000 for experiment set B and C, which have finer chromosomal representations, and
hence are expected to converge in fewer generations. The population is fixed across all
experiments to 500 sellers, and- 8 distinct bidders for each seller. Bidder chromosomes
are randomly generated at the beginning of the simulation. Bidder valuations are randomly
generateceach generation1000 auctions are conducted during each generation for all
three experiment sets. Because there is almost no literature on how to determine bidding
functions that are not parameterized simple functional forms (such as linear or quadratic),
we determined this number through several preliminary experiments, these are described in

section 5.4.
The optimal mutation rate for experiment set A is set to be equal to 1/22 as suggested in
[MUhlenbein and Schlierkamp-Voosen 93] because there are 22 different variables in the

sellers and bidders chromosomes. We also implement the mutation operator suggested in

[Mihlenbein and Schlierkamp-Voosen 93] as follows:
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Var™ = Var+ s- a - r where € {1,2.1000Q
and
s e{-1+1

[ : mutation range= 0.1* (1-0)

a = Z u2* ue{01} chosen atrandom , k: mutation precision ,k =16
k
where i is the iteration number. A variabMar of the chromosome (each bidder

chromosome contains 20 variables; each seller chromosome, two) is selected with
probabilityr=1/22 to mutate. For every variable, we flip a bias coin, with probability 1/22,
the variable mutatésFor experiment B, the mutation rate is set to be 1/42 antt /( 2)

for experiment C (recall that the number of bidder variables for experiment B is 40 and that

of C isn). If the variable is not selected to mutate, its value does not change. Otherwise,

the new variablevar™"

is computed by adding or subtracting a small valper; .
Addition or subtraction is randomly chosen with probability r, is set to bed.1*(1-0)

because the range of bidders’ chromosomes and sellers’ chromosomes are all between 0

and 1, and the mutation range is fixed to be 10% of this range [Muhlenbein and
Schlierkamp-Voosen 93] a is computed with the equatiom = Z u2™ , whereu is
k

initially 0 and is randomly chosen to be 1 with probabilityand the suggestddvalue is

16. On average, there will only be amgvith value 1, which makea, = 27" and this will

!'The mutation rate is set to be 1/number of variables. In our experiments, bidders have a lookup table with 20 entries and
each entry is treated as an independent variable. Sellers have 2 chromosomes, @ and P; therefore, there are 22 variables in
total and the mutation rate is set to be 1/22.

2 Bidders’ chromosomes contain variables representing bids between 0 and 1; sellers” chromosomes include probability of his
action, «, which is between 0 and1, and the uniform-price offer, P, which is also between 0 and 1.
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be the addition or subtraction to the original chromosomes [Miihlenbein and Schlierkamp-

Voosen 93].

5.3 Detailed Steps

After the population is initialized, each bidder submits a bid according to its bidding
function composite of a lookup table. Notice that, if the bidder's assumptions about the
seller's values o# andP are correct, and the bidder can determine a best response to these
values, this is indeed an optimal bid. The seller’s fithess score is the total revenue over both

stages, while that of the bidder is the individual payoff after both stages.

The bidder’s payoff is calculated as the difference between its purchasing price — either its
submitted bid at stage | or a fixed price offer — and its valuation. If the seller offers a fixed
price higher than the bidder’s valuation, the offer is rejected, and does not contribute to the
seller's revenue, and the bidder’s payoff is zero. Because the fithess function takes inputs
from the chromosomes of both sellers and bidders, sellers and bidders can be viewed as
two species that affect each other while evolving over generations. Figure 5-1 illustrates the
detailed steps in one generation for experiment set A. Seven different experiments are
conducted. For experiment B and C, the detailed steps are the same except for the
chromosome encoding and the bidder valuation distribution.

As illustrated in figure 5-1, the number of generation differs for different experiments. For
experiment set Ay = 10,000 for experiment set By = 4,00Q for experiment Cy =

5,000
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5.4 Experiment Set A: Preliminary Results

This section describes preliminary experiments to determine some parameters that are used
in later, more extensive experiments. We conduct an experiment of the independent first
price auction, for which the Nash equilibrium strategy is well-known, and can be
theoretically derived (see section 4.1). We explorth 2, 4 and 8 biddersvhether
evolutionary programming simulations can result in the correct equilibrium strategy. We
choose 500 sellers, and 100 auctions per generation. Figure 5.2 compares the theoretical
equilibrium strategy and the bidder chromosome obtained from experiments for 2 bidders.
It shows that the experiments do provide correct results, but that these results contain some
“noise”. Results for 4 bidders and 8 bidders also provide similar, "noisy” results. We
expect that some of the noise can be eliminated with an increase in the number of auctions
per generation (a larger number of auctions results in a better approximation of the payoff
due to different valuations among other bidders). However, some of the noise is also due to
the existence of mutation, because of which the current strategy is slightly perturbed from

the optimal strategy.
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Figure 5-2: Experiment Results Compared to Theoretical Strategy

5.5 Experiment Set A: Simulation Results

5.5.1 Experiment One, Two and Three--n BRldersk = 2, 3,and4 ltems

In all three experiments, the selletischromosome converges &= 0.9999 and theP
chromosome does not converge. This is because avtsenearly 1, a second chance offer
always occurs in Stage II; hence the fixed pries never tested; and therefore does not

converge. The bidding function (lookup table) for 2 items converges as in Figure 5.3.

We compare the analytically-obtained strategy derived in Chapter 4 with the experimental
results. Wher: = 1, the analytically-obtained strategy for valuation less or moreRhan

the same based on equation (1) in Chapter 4.
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Figure 5-3: Strategy Comparison of Experiment One

Figures 5-3, 5-4 and 5-5 show both the analytically-obtained strategy and the bidding

strategy obtained from experiment results for all three experiments.
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Figure 5-4: Strategy Comparison of Experiment Two
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Figure 5-5: Strategy Comparison of Experiment Three
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In all three experiments, it can be observed that even though the two strategies are not
identical, the bidding strategy obtained using genetic simulations is similar to the
analytically-obtained strategy; especially for high valuations. Solutions to the analytically-
obtained strategies for these values of k are increasing, but not injective. A reasonable
explanation is that because the bidders’ fithess function is defireegbasted payofgnd a
non-zero contribution to the fitness function occurs only when the bidder wins, a higher
percentage of the total payoff occurs for a high valuation, because a high valuation has a
higher probability to win the auction with higher bids. When the bidders’ fithess function is

changed toH(paLff figure 5-6 shows the preliminary results from an experiment that

X)+G(x)’
only conducts 200 auctions per generation after 500 generations. The bidder’'s expected
payoff is denoted as@ Y( x- B+ H(X[a(x—b)+(L—a)(x—P)] from chapter 4.
Because the sellerg converges to 0.9999, we can then rewrite the expected payoff to
GX ¥ b+ H X x D=[ QR+ H(X](x—b) . The modified fithess function is to

optimizex-b. It is important to note that the modified fithess function cannot be applied to
experiments where the optimal valuexaé not known to be 1 because the expected payoff

equation is different.
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Figure 5-6: Bidding Function Comparison Using the Modified Fitness Function

We conduct a numerical analysis with the bidding function obtained from experiments with
the modified fithess function. We first show that any different combinatiéhamida does

not increase total revenue in figure 5-7, which provides average revenue over 10,000
auctions. In figures 5-8 and 5-9, we show that neither random over-bidding nor random
under-bidding with any percentage range increases bidder payoff. Bidder No. 1 over-bids
and under-bids while bidder Nos. 2 to 8 bid according to the bidding function. Therefore,
we’ve show that near Nash equilibrium is obtained from the numerical analysis thus it is
evolutionary stable. Deviation does not benefit. As noted in [Riechman 01], results
obtained from genetic algorithms are not considered perfect Nash equilibrium. This is
because, in a GA experiment, due to mutation, the entire population does not adopt the

Nash symmetric strategy, but almost all of it does.
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The main reason that we are exploring the difference between the original fitness function
and the modified fitness function is because it shows that the modified fithess function
provides similar results in fewer generations. This is crucial because we plan to conduct
further experiments with a larger number of bidders. When the number of bidders
increases, the number of auctions required to obtain a reasonable approximation of the
average payoff increases exponentiadiyd the amount of time each generation takes to
finish increases with it. With the modified fitness function, we can obtain analytically-
obtained strategies from experiments with a smaller number of total generations, and a

smaller number of auctions per generation.
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Figure 5-7: Total Revenue Comparison for Diffefeér@nda

3 Because of G( X) = Xn_l ,and 7 is the number of bidders.
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Figure 5-9: Bidder Payoff with Under-Bidding
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5.5.2 Experiment Four and Five--n = 8 Biddekss= 5, and 6 ltems

In the experiment witlk = 5 items, the seller’s value af converges to 0.0015, and the
value ofP converges to 0.507. In the experiment vith 6 items, the seller’s value af

does not converge between 0 and 0.5, but the valBecohverges to 0.4776. The results
suggest that the seller's best response is randomizing between a second chance offer and a
fixed price offer. The optimal fixed price offer is 0.507 and 0.4776 respectiveky=ds

and 6. Numerical analysis is conducted in a later section to show that this is consistent with
a near Nash equilibrium strategy. Figure 5-10 shows the comparison between the bidding
function obtained from the experiment wklr 5 items and analytically-obtained strategies

with o = 0.0015 Figure 5-11 shows the comparison between the bidding function obtained
from the experiment witk = 6 items and analytically-obtained results witlequal to 0.1,

0.3 and 0.5 becausedoes not converge to a single value between 0 and 0.5. As shown in
the figure, several analytically-obtained strategies are not monotonic increasing; hence the
experimental outcomes are not expected to match the analytically-obtained strategies. The

analytically-obtained strategies are not injective in both experiments.

In Section 5.7 we study the variation in the bidding strategy, across the population in a
single experiment, as well as across experiments. We find that there is a very small
variation across the population as well as across strategidés #05; this leads us to
conclude that the genetic algorithm has converged to a symmetric equilibrium bidding
strategy. On the other hand, for 6, we find a small variation (among bidding strategies
averaged over the population) across experiments, but a larger variation across the

population for a single experiment. Further, the variation across the population does not
63

www.manaraa.com



change significantly with an increase in the number of generations, leading us to conclude
that the experiment does not converge to an equilibrium strategy; further, that the average
strategy obtained is consistent across experiméfits hence conclude that the strategy of
Figure 5-7 is not the equilibrium bidding strategy for k =afd that bidding strategies are
likely to be mixed strategies, and hence that we need a different approach to parameterize
the strategies. Details on the study of the variation may be found in section 5.7, and details

on the study of mixed strategies may be found in section 5.9.
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Figure 5-10: Strategy Comparison of Experiment Four
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Figure 5-11: Strategy Comparison for Experiment Five

5.5.3 Experiment Six and Seven—n Bi8lders k=7 and8 Items

In the experiment witk = 7 items, the seller's chromosome converges to 0.09, andRhe
chromosome converges to 0.4684. Results suggested that seller’s best response is to always
make a fixed price offer at 0.4684. In the experiment With 8 items, the sellers
chromosome converges to 4.9e-07, andPtheromosome to 0.4809. The following figures

show the comparison between bidding strategies obtained from the experiment and
analytically-obtained strategies. In the experiment with7 items, the difference between

the experimental results and the analytically-obtained strategies appear to be because, in the
GA simulation, because fixed-price offers are made to randomly chosen bidders, bidders
with valuation greater tha can risk low bids when is small. In the experiment with=

8 items, the analytically-obtained strategy is not monotonic increasing.
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Figure 5-12: Bidding Strategy from Experiment Six
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Figure 5-13: Bidding Strategy from Experiment Seven
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We study the variance across the population and across experiments in section 5.7, and
conclude, as wittkk = 6, that the bidding strategies in Figures 5-12 and 5-13 are not
equilibrium bidding strategies, and that equilibrium bidding strategigs fov andk = 8

are likely to be mixed strategies. We study mixed strategies in section 5.9.

5.6 Numerical Analysis

5.6.1 Demonstrate Near Nash Equilibrium for Experiments Four and Five

Bayesian strategies for experiment four have negative values and are not invertible as
shown in Figure 5-10. To show that the experimental results reach Nash equilibrium, we
conduct a numerical analysis from both the seller's side and the bidder’'s side. In
experiment four, experimental results show that the seller's valueloés not converge,

and that the seller's value &f converges to 0.507. In experiment five, it shows that the
seller's value olx does not converge between 0 and 0.1, but that the seller’'s vaRie of

converges to 0.4776.

5.6.1.1 Sellers’ Side

For experiment four, we first show that any different combinatio® aehd « does not
increase total revenue in Figure 5-14. It also shows thatRaitked at 0.5, total revenue
does not change for amy This is average over 5,000 auctions. We show the same result

for experiment five with ¢anging from 0 to 0.1 in figure 5-15.
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Figure 5-14: Total Revenue Comparison for DiffekeandP, Experiment 4
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Figure 5-15: Total Revenue Comparison for DiffereandP, Experiment 5
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5.6.1.2 Bidders’ Side

If the seller'sa andP are the same as obtained from experiments, we show that over-
bidding does not profit bidders in figure 5-16 and 5-17 for experiment four and five
correspondingly. All the following numerical results are obtained from averages over 5,000
auctions as well. In figure 5-16 and 5-17, bidder No. 1 always over-bid a random
percentage between 0 to 100%, but not exceeding its valuation, and bidder No. 2 to No. 8

bid according to the bidding function obtained from experiment results.
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Figure 5-16: Bidder Payoff Comparison for Over-bid, Experiment 4
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N=8, K=6, P=0.4776, Bidder 1 Over-bid
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Figure 5-17: Bidder Payoff Comparison for Over-bid, Experiment 5
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Figure 5-18: Bidder Payoff Comparison for Under-Bid, Experiment 4
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Figure 5-19: Bidder Payoff Comparison for Under-Bid, Experiment 5

We also show that under-bidding does not profit bidders in figures 5-18 and 5-19 for
experiment four and five. In each auction, bidder No. 1 always under-bid a random
percentage between 0 and 1, but no lower than zero, and bidder No. 2 to No. 8 bid

according to the bidding function obtained from experiment results.
Furthermore, we show that over-bidding does not profit bidders even for a small percentage
in figures 5-20 and 5-21. In each auction, bidder No. 1 always randomly over-bid in a 10%

range and bidder No. 2 to No. 8 bid according to the bidding function obtained from

experiments.
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Figure 5-20: Bidder Payoff Comparison for Over-Bid in a Small Range, Experiment 4

N=8, K=6,Bidder 1 Randomly Over-bid within 10% Range, 5000 Auctions
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Figure 5-21: Bidder Payoff Comparison for Over-Bid in a Small Range, Experiment 5
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Similarly, in figures 5-22 and 5-23, we show that under-bidding does not profit bidders
even for a small percentage. In each auction, bidder No. 1 always randomly under-bid in a
10% range and bidder No. 2 to No. 8 bid according to the bidding function obtained from
experiments. We show that neither over-bidding nor under-bidding in a small range results
in higher bidder payoff even in a small range; therefore, deviation from the bidding
function obtained from experimental results does not benefit bidders. We also show that
deviation froma andP for the seller does not benefit sellers. We can now conclude that
results in experiment four and five reached Nash equilibrium because it consists of mutual
best responses for sellers and bidders.
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Figure 5-22: Bidder Payoff Comparison for Under-Bid in a Small Range, Experiment 4
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N=8, K=6, Bidder 1 Randomly Underbid within 10% Range, 5000 Auctions
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Figure 5-23: Bidder Payoff Comparison for Under-Bid in a Small Range, Experiment 5

5.6.2 Show Nash Equilibrium for Experiments Six and Seven

Similar to experiments four and five, Bayesian strategies for experiment six and seven also
have negative values and are not monotonic increasing. To show that the experimental
results reach Nash equilibrium, we conduct a numerical analysis from both sellers’ side and
bidders’ side. In experiment six, experimental results show that the seller's value of
converges to 0.001, and the seller's valu® abnverges to 0.4684. In experiment seven,

we see that the seller’s valueso€onverges to 0.001, and the seller’s value obnverges

to 0.4809. We obtain the same results for experiment seven; in the following section we

only show the figures from experiment six.
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5.6.2.1 Sellers’ Side
We first show that any different combination®anda does not increase total revenue in
figure 5-24. It also shows that withfixed at 0.4684, the total revenue reaches its highest

ata near 0. The values are averaged over 5,000 auctions.

5.6.2.2 Bidder’s Side

If the seller’'s values ok andP are the same as obtained from experiments, we show that
over-bidding does not profit bidders in figure 5-25. All the following numerical results are
obtained by averaging over 5,000 auctions. In each auction, bidder No. 1 always over-bid a
random percentage and bidder No. 2 to No. 8 bid according to the bidding function
obtained from experiment results. We show that for any percentage, over-bidding does not

result in higher payoff.
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Figure 5-24: Total Revenue Comparison for DiffereanhdP
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N=8, K=7, Bidder1 Randomly Over-bid, 5000 Auctions
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Figure 5-25: Bidder Payoff Comparison for Over-Bid

Similarly, in figure 5-26, we show that under-bidding does not profit bidders for any
percentage. In each auction, bidder No. 1 always under-bid and bidder No. 2 to No. 8 bid

according to the bidding function obtained from experiment results

N=8, K=7, Bidder 1 Randomly Under-bid, 5000 Auctions
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Figure 5-26: Bidder Payoff Comparison for Under-Bid
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Based on the numerical analysis above, neither deviation for bidders nor deviation for
sellers benefits them. It is shown that Nash equilibrium is reached because it is a mutual

best response for both sellers and bidders.

5.7 Mixed Strategy Analysis

As pointed out in [Riechmann 01], the variance of the chromosome across the population in
genetic algorithm simulations can be used as a measure of convergence. The smaller the
variance is, the more converged the genetic population is. That is under the assumption that
the solution is a pure, non-probabilistic strategy. If there is no solution that is a pure non-

probabilistic strategy, the the population variance will remain high.
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Figure 5-27: Comparison of Variance of Round 1
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Figure 5-28: Comparison of Average Variance over 5 Rounds

We studied the variance across the bidder population, as well as across experiments. We
notice that the population variance for the bidder chromosome is considerably laiger for

= 6, 7 and8 than that forkk = 5, see Figure 5-27 for the population variance of the first
round and Figure 5-28 for average population variance of 5 rounds of experiments. We
also observe the variance over 6,000, 7,000, 8,000, 9,000 and 10,000 generédkiens, for

7 and8, and determine that it does not change significantly. We hence conclude that the
population has achieved evolutionary stability; however, the larger variance implies that it
is possible that the strategy is not a deterministic strategy, but is, instead, a mixed strategy,

which our chromosome encoding scheme does not capture accurately.

Consider the bidding strategy result of a single experiment (that is, the average value of the

bidder chromosome across the population) as a vector of random variables (the value of the
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bid for each valuation is a random variable). We carried out five such experiments,
obtained five vectors of instances of the random variables, and used these samples of the
random variables to estimate their variances. The estimated variance, as a function of
valuation, is plotted in figure 5-29 fdr = 5, 6, 7 and8. As plotted in figure 5-29, we
observe that each of these values is very smak foi5, 6, 7and8. We hence conclude

that the observed results are indeed repeatable, and hence that our conclusions, that we
have obtained bidding strategies for= 5 but not fork = 6, 7 and 8 are correct. In
experiment B, we change the encoding scheme of the bidder chromosomes to allow mixed
strategies. It is important to note that the encoding scheme still allows pure strategies.

Details are discussed in section 5.9.
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Figure 5-29: Unbiased Estimate of Variance in Bidding Strategy across Experiments

5.8 Experiment Set A: Summary

We summarize our experimental results as follows, in this 8-bidder-2-stage game:
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k =2, 3, and 4The seller’s best response is to price discriminate. The bidder’'s best
response is consistent with the Bayesian strategy. This means that the seller prefers
the privacy-infringing choice and the best the bidders can do is to bid the Bayesian
strategy. Rational behavior does not decrease bids enough to deter seller from using
price discrimination.

k = 6. The seller's optimal strategy is to randomize its action between price
discrimination and a uniform-price offer. Bidders have a bidding strategy that is
different from the Bayesian one and is likely to be a mixed strategy. This implies
that the seller is indifferent about privacy-protection and privacy-infringing choices.

k =5, 7,8 The seller's best response is to always make uniform-price offers and the
bidder's best response is pure strategykfior 5, and is likely to be a mixed,
randomized strategy fok = 7, 8 This means that sellers prefer the privacy-
protecting choice, and, fdr = 7, 8 part of the bidder's best response is between

dropping out by bidding zero, or revealing valuation by bidding its valuation.

To summarize experiment set A, when first-price auction is adopted at stage |, it is clear

that different degrees of item scarcity make a difference for the seller’'s choice between

privacy protection mechanism and privacy infringement mechanism. Bidders respond by

changing their bidding strategy for different degrees of privacy invasion.

5.9 Experiment Set B: Mixed Strategy Experiment

From experiment set A, we observe that it is highly possibly to have a mixed strategy when

the bidders’ chromosome has high variance over the population. In this experimental set,
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we change the design of bidder chromosomes to analyze possible mixed strategies. In the
previous two sets of experiments, the bidder's chromosome is encoded as a valuation-to-
bid lookup table. Each valuation has a bid. It is harder to reverse engineer the composite of
possible mixed strategies with only a valuation-to-bid mapping, because a mixed strategy is
composed of probabilitieand bids. For example, if a mixed strategy contains two
strategies with 50% probability each: bid 0 and bid 1. It means that half of the time a bid 0
is submitted and a bid 1 otherwise. To better represent a mixed strategy, we encode the
bidder chromosome as an-by-mmatrix wherem is the number of bids that can be
submitted. Each element within this matrix represents the probability of this bid. For
example, the bidder chromosome can be illustrated in the following table:

Table 5-1: Bidder Chromosome Example

Bid O Bid 0.5 Bid 1.0
Valuation 0 0% 0% 0%
Valuation 0.5 50% 50% 0%
Valuation 1.0 30% 60% 10%

In this example, with valuatioh.0, 30%of the time the bidder submitaid and60% of

the time &0.5 bid is submitted. In this set of experiment, bidders are not allowed to submit
a bid that is higher than its valuation; therefore the element (2, 3) be@%use bidder with
valuation0.5 cannot submit 4.0 bid. The idea of encoding bidder chromosome with-a
by-m matrix is to convert this problem from one where the bid is drawn from the

continuous solution spa¢@, 1] to one where it is drawn from a discrete solution space of a
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few possible bids. In this set of experiments, the first-price auction and the uniform

distribution are adopted. Bidder valuation ranges fodml with equal probability.

5.10 Experiment Set B: Simulation Results

5.10.1 Experiment One;n = 8 Bidders k = 6 Items

We conduct two versions of this experiment. In the first version, the bidder chromosome is
encoded by &-by-5 matrix. It means that each bidder can have 5 types of valu@tion:
0.25, 0.5, 0.75, andl.0. Each bidder is allowed to submit 5 different bids with different
probability. No bid higher than valuation is allowed to be submitted. We obtain the
following bidder chromosome matrix from the experiment after 4000 generations with

1000 auctions in each generation:

Table 5-2: Bidder Chromosome from Experiment One

Bid 0.0 Bid 0.25 Bid 0.5 Bid 0.75 Bid 1.0
Valuation 0.0 | 100% 0% 0% 0% 0%
Valuation 0.25| 3.31% 96.69% 0% 0% 0%
Valuation 0.5 | 3.82% 86.89% 9.29% 0% 0%
Valuation 0.75| 2.94% 6.77% 89.87% 0.43% 0%
Valuation 1.0 | 2.78% 4.95% 91.93% 0.23% 0.12%

In this matrix we cannot observe an obvious mixed strategy because each type of valuation

has a mapping bid with very high probability. It is more likely to be a pure strategy instead.
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We then conduct the second version of the experiment wittildy-11matrix for the

bidder chromosome. This experiment also has 4,000 generations and 1,000 auctions per
generation. We plot the bidder chromosome in figure 5-30. For valuation lower than 0.5,
there does not exist an obvious mixed strategy. We extract the bidder chromosome of
valuation higher than 0.5 and plot it in figure 5-31. We can observe that there are two major

bidding strategies exhibited in the plot: bidding 0.5 and a less than 0.5 bid with different

probabilities.
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Figure 5-30: Bidder Chromosome from Experiment One
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Figure 5-31: Bidder Chromosome from Experiment One, Higher Valuation

5.10.2 Experiment Two—n = Biddersk = 7 Items
Similar to experiment one, we conduct two versions of the experiment with 8 bklders,
items, the uniform distribution, and the first-price auction. The following table illustrates

the experimental results when the bidder chromosome is encoded as a 5-by-5 matrix.
The experimental results are different from experiment one, but, as in experiment one, no
obvious mixed strategy is observed at this level of sampling of the bid/valuation space. We

further conduct the second version of the experiment withllaby-11 matrix. The

following two figures illustrate the bidder chromosome obtained from experiment.
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Table 5-3: Bidder Chromosome from Experiment Two

Bid 0.0 Bid 0.25 Bid 0.5 Bid 0.75 Bid 1.0
Valuation 0.0 | 100% 0% 0% 0% 0%
Valuation 0.25| 83.71% 16.29% 0% 0% 0%
Valuation 0.5 | 1.7% 94.61% 3.7% 0% 0%
Valuation 0.75| 1.13% 94.14% 3.98% 0.75% 0%
Valuation 1.0 | 1.48% 94.20% 3.80% 0.3% 0.22%
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Figure 5-32: Bidder Chromosome from Experiment Two
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Figure 5-33: Bidder Chromosome from Experiment Two, Higher Valuation

5.10.3 Experiment Three—n =Biddersk = 8 ltems

Similar to experiments one and two, we conduct two versions of this experiment with n = 8
bidders,k = 8 items, the uniform distribution and the first-price auction. The following
table illustrates the experimental results when the bidder chromosome is encoded as a 5-by-

5 matrix.

The experimental results are different from those of experiment one, are similar to those of
experiment two; no obvious mixed strategy is observed. On conducting the second version
of the experiment with afh1l-by-11matrix, we obtain bidder chromosomes illustrated in

Figures 5-34 and 5-35.
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Table 5-4: Bidder Chromosome from Experiment Three

Bid 0.0 Bid 0.25 Bid 0.5 Bid 0.75 Bid 1.0
Valuation 0.0 | 100% 0% 0% 0% 0%
Valuation 0.25| 86.54% 13.46% 0% 0% 0%
Valuation 0.5 | 1.51% 94.76% 3.73% 0% 0%
Valuation 0.75| 1.22% 95.24% 2.91% 0.63% 0%
Valuation 1.0 | 0.99% 96.41% 2.03% 0.35% 0.22%
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Figure 5-34: Bidder Chromosome from Experiment Three
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Figure 5-35: Bidder Chromosome from Experiment Three, Higher Valuation

In this experiment, from figure 5-35, we can observe it is likely to have two different mixed
strategies: bidding 0.5 and bidding below 0.5 uniformly. The distribution of the bidding

strategy below 0.5 is more likely to be uniform than in experiments one and two.

5.11 Experiment Set B: Summary
We summarize our experimental results as follows, when analyzing the mixed strategy:

1. Granularity matters: we have to conduct two versions of experiments with different
granularity because the first version changes the nature of the game. We have to be
careful about the observations we make with different granularity.

2. When converting the game into a discrete solution space, we cannot take the

solution from the discrete version and conclude that the same solution also applies
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to the continuous version. However, we can make better observations when the
granularity is right. One way to find the right granularity is iteratively dividing the
continuous space into more discrete actions; when the results don’t change, we can
know that this is the minimum granularity to mimic the game of continuous space.
In our experiment, we have also conducted experiments ilhbg-21matrix as

bidder chromosome. The result is not different from that dflaby-11matrix as.

We thus conclude that 11-by-11 matrix is the minimum granularity for this problem.
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CHAPTER 6: EXPERIMENTAL DATA FROM EBAY

In this chapter, we describe the genetic algorithm simulation results of experiment set C. It
takes input from real data on eBay as well as from a uniform distribution between the
highest and lowest valuations estimated from eBay data. We also describe the
implementation of a software bidding tool for bidders to adjust bidding strategies
considering the possibility of a single second chance offer (thatig) after auctions end.

It is developed based on our model and genetic algorithm experiments. In the following
sections, the experimental data is presented, and the features, the platform and the language

of the bidding tool are documented.

6.1 Experiment Set C: Bidder Valuation Distribution from eBay Data

For experiment set C, we collect real auction data from eBay to obtain the valuation

distribution for bidders. We conduct experiments for both the real data distribution and the

uniform distribution. There are certain constraints about gathering auction data from eBay.
First, only data from auctions completed in the past two weeks are publicly available;

second, a keyword search is needed to gather all auctions for the same item. Keyword “Wii
14” was used to pull all the auctions of a unique bundle of the Wii gaming console, two

remote controllers and 14 games. We chose this item because it has a low inventory in

retail stores and is thus very popular on eBay.

After gathering raw data, we clustered all the auction data by number of bidders. We

observed that the number of auctions with 8 and 13 bidders was in the hundreds, large
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enough to make an accurate estimate(gf) the cumulative distribution function. For the
uniform distribution,F(x) = x. The difficulty of computind-(x) from eBay data is the bids
of an auction only show the valuation of all bidders except the winner. Because the highest
valuation, x, is unknown, we have to compute an estimd&édpas follows:

= Step 1: for each auction, calculatgXy:

numberof2 ndhighestbiddersbelowx

F,(X) =
2(9 total numberof2 ndhighestbidderg numberofauctiong

= Step 2: fromF,(x) computeF(x) based on order statistics, wheris the number of
bidders: (%= nF(x)"*[1- F(X)]+ F(x)"
Results from previous two steps are paird=0f) and x; a polynomial function can be

obtained with least square approximation using Matlab. We plot the result in the following

figure.

- from eBay data
Approximated F(x)

08 s .

0.7f : - |

F(x)

06 /s -

051 : i

y = 2.6e-009*x* - 3.8e-006"x° + 0.002"%” - 0.46"X + 36

0.3 | I 1 1 1 1
320 340 360 380 400 420 440 460

Valuation

Figure 6-1:F(x) from Least Square Approximation
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Seven experiments are conducted with 8 bidders each and number of itekns2, 3, 4,
5, 6, 7 and 8. Each experiment has two versions—version one has bidder valuation
generated based df(x) obtained from real eBay auctions; version two is run with the

bidder valuation set to be uniform (which would result in a linear fun&tg)).
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--- Experiment Result, Strategy One {(Uniform Distribution)

- == Experiment Result, Strategy Two {Uniform Distribution) :

—— Analytically Obtained Strategy (Uniform Distribution)
400+ B

B
i A
J’ <
s
350+ 1 R
AL
74
=47
\'&"( =
o
P :Ba‘f\
7
300 i : 4
300 350 400 450
Valuation

Figure 6-2: Bidding Strategy from Experiment One

6.2 Experiment Set C: Simulation Results

6.2.1 Experiment One and Two --n =Hdders, k = 2and3 ltems

In all three experiments, the selletischromosome converges &= 0.9999 and theP
chromosome does not converge. This is because avigenearly 1, a second chance offer
always occurs in Stage II; hence the fixed prigeis never tested; and therefore does not

converge.
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We compare the analytically-obtained strategy derived from Chapter 4 with the
experimental results. When=1, the Bayesian strategy for valuation less or more Rhian

the same based on equation (1) in Chapter 4. Figures 6-2 and 6-3 show both the
analytically-obtained strategy and the bidding strategy obtained from experimental results
for both experiments. For both the uniform and non-uniform distributions, the two lookup
tables are almost identical. This implies that there is no strategy, in either experiment, that
is a mix of two strategies, and, additionally, that a pure strategy is a symmetric equilibrium

for both distributions.
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Figure 6-3: Strategy Comparison of Experiment Two
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8 Bidders, 4 items, 5000 Generations
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Figure 6-4: Bidding Strategies of Experiment Three

6.2.2 Experiment Three, Four, Five, Six and Seven-&Bidders,k = 4, 5, 6, 7and8
ltems

In all five experiments, the selleris chromosome converges &= 0.9999 and theP

chromosome does not converge. This is also because the fixedPprgceever tested; and

therefore does not converge.

As observed in Chapter 4, it is not possible to obtain optimal bidding strategies using
Bayesian analysis whdais large; hence, in figure 6-4, 6-5, 6-6, 6-7 and 6-8, we cannot

compare the bidding strategies obtained from GA simulations to analytical results.
However, it is clear from the experimental results that pure bidding strategies exist at

equilibrium.
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Figure 6-6: Bidding Strategies of Experiment Five
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Bids

8 Bidders, 7 Items, 5000 Generations
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Figure 6-7: Bidding Strategies of Experiment Six
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Figure 6-8: Bidding Strategies of Experiment Seven
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6.2.3 eBay Data with Optimal Bidding Strategy: n = 8 Bidders and 2 Items

As described in section 6.1, we collected auction data from eBay with keyword “Wii 14”.
Data from 140 auctions were used to obtain bidders’ valuation distribution over a 2 week
period. The second highest bid of every auction is collected. We assume that the bid equals
to valuation for all the second highest bidders because they bid as high as they can before
dropping out. We take the valuation as input and compute a new optimal bid based on the
bidding strategy obtained from experiment one. We assume that there are only 2 identical
items available in all the 140 auctions. We calculate the difference between the actual bid
submitted on eBay and our suggested, optimal bid and consider the difference to be
possible saving (payoff) for all the second highest bidders. It is also the additional saving
for the highest bidders. We plot the histogram of the bidder payoff if strategies obtained

from experiments are adopted. The average saving for every bidder is 22.01 dollars.

Murnber of Bidders

u] 10 20 3 40 a0 <h] 70
Bidder Payoff : Amount Saved (5

Figure 6-9: Bidder Payoff
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6.3 Experiment Set C: Summary
We summarize our experimental results as follows, in this 8-bidder-2-stage game:
1. The seller's optimal strategy is to always price discriminate regardless of k
Becausen = 1, there is a corresponding pure bidding strategy for any number of
items.
2. The bidder’s best response is to shade (reduce) its bids according to (1) the value of k

and (2) distribution of bidder valuation.

To summarize experiment set C, when the second-price auction is adopted at stage |, it is
clear that different degrees of item scarcity make a difference for bidders’ optimal
strategies but not for the sellers. Sellers would always prefer privacy infringement
mechanism. It could be because of the following reasons: (1) second-price auction
mechanism is used at stage |, it may push bidders to bid higher even there are more than
one stage, (2) the bidder valuation ranged from $297 to $446—different from experiment A

with a range between 0 and 1.

6.4 Major Component and Code Flow

There are four major components of this bidding tool, including (1) an interactive user
interface component, (2) an eBay data collecting component, (3) a valuation distribution
computing component, (4) a genetic algorithm experiment component. Figure 6-10
illustrates the whole process, beginning with taking user input to computing a suggested

bid.
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6.5 Module and Programming Language Used

The entire bidding tool is written using the Python programming language. For the
interactive user interface component, the EasyGUI module, an open source project written
in Python, is adopted. It includes basic GUI features such as a message box, and can be
programmed to accept user input. . For the eBay data collection and valuation distribution
components, open source modules including easyBay, SciPy, NumPy modules are used.
The easyBay module translates XML results gathered from querying eBay's API into
Python objects for further computation. SciPy and NumPy are scientific and mathematic
computing modules that provide features including least square fitting and polynomial
roots finding. The genetic algorithm experiment component is made of reused code from

previously developed experiments described in section 6.2.
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Figure 6-10 Flow Chart of the Bidding Tool

6.6 Usage lllustration and Limitation

The following screen shots are taken to illustrate the usage of this bidding tool. It first asks
the user to provide keywords for the target item. After computing the bidding function, it
asks the user to provide the maximum he or she is willing to bid for such an item, and then
returns a suggested bid. The example shows a user searching for a Wii game console as a

bundle of 14 games. The user has is willing to pay $180.50 for such an item.
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Figure 6-11: User Provides Keyword
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Figure 6-12: User Provides Valuation
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Figure 6-13: Tool Provides Bid Suggestion
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A full scale genetic algorithm experiment as described in section 6.2 takes at least one
week to complete on a machine of Intel Core Duo 1.8GHz processor with 2GB memory. It
is not feasible for the bidding tool since auction listing on eBay has a time limit that can be
as short as 3 days. To shorten the running time for the genetic algorithm experiment
component, this component assumes the following conditions:

= Each generation consists of 1000 auctions

= A total number of 100 generations

= 200 sellers and each seller has 8 bidders

= Mutation rate is set to be 1/22

As a result of the shortened simulation, the bidding function has to be approximated with a
least squares method. This reduces the accuracy of the optimal bidding strategy, but can be
completed in 1.5 hours on a machine with Intel Core 2 Duo 2.1GHz processor and 4GB
memory The number of bidders and available items can be easily modified if more features
are provided for the user to specify auction to participate by identify the eBay auction ID.
The bidding tool can gather information for a specific auction such as number of current

bidders and take it as input for genetic algorithm experiments.

The number of available items (the valuekpis not publicly available information at this
time. Because this information is not available, the bidding tool does not have a means of
estimating seller reputation: the frequency with which the seller utilizes the second chance

offer mechanism. However, if eBay were to make available information on seller
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reputation, this information could easily be used by the tool to improve the accuracy of

bidding strategies.

6.7 Observation

An intelligent bidding tool can be helpful as a privacy protection mechanism. We have
developed one based on our analysis of a multi-stage game that takes repeated re-
encounters into consideration. It is important to note that the suggested bid does not
guarantee winning the auction, as whether an auction is won depends on both, the bid and
the valuations of other participating bidders. However, the suggested bid comes close to

maximizing bidder payoff if the seller has one extra identical item.

The trade-off between running time and bidding strategy accuracy can be improved as
computing power further evolves. Because the bidding tool is written in Python, it can be

easily executed on both Windows and Linux/Unix platforms.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

In this dissertation, we have proposed that privacy be approached from a game-theoretic
perspective. We have used the perspective to study the specific problem of the second-
chance offer, by presenting a quantitative model of the second-chance offer, and a
(randomized) generalization of the deterministic gam@lashi, Sun and Vora §5We

have used this approath examine the feasibility of rationality as a privacy-protection
mechanism in auctions. We are the first to study randomized seller strategies in auctions,

and privacy games without closed-form solutions.

We have examined this game with both first-price and second-price auctions in stage I.
Real auction data on eBay is collected as part of input to our genetic algorithm
experiments. We have also examined the case of item scarcity. We have presented the
results—obtained through both, Bayesian analysis and experimental results conducted with
genetic algorithm simulations. It is shown that rationality provides sufficient privacy
protection when items are not scarce, but not otherwise. We have also implemented bidding
software as a proof of concept to utilize optimal bidding strategies on eBay. Rationality can
provide limited privacy protection as automatic bidding tools. In summary, we have shown
that rational behavior can perform the task of privacy protection, and that this can be
implemented as a rational bidding tool in the security infrastructure. In particular,

cryptographic schemes are not the only solutions for privacy protection.
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We have conducted three sets of genetic algorithm experiments. In experiment set A, we
are able to obtain pure bidding strategiesrfer 8 bidders ank = 2, 3, 4, 5 items. We

have observed the existence of possible mixed strategias=f@& bidders ank = 6, 7, 8

items. We further conduct experiment set B and successfully obtain the mixed strategies by
changing the encoding of bidder chromosomes. In experiment set C, we apply the
techniques developed in previous experiment sets with real eBay data. We are able to

obtain pure bidding strategies when second-price auction mechanism is used in stage |.

Possible future work includes (1) generalizing the privacy model of a two-stage game into
a repeated, infinite stage game, (2) applying genetic algorithm experiment for other
problems with interdependent objective functions, and (3) applying the encoding scheme
developed in this dissertation to obtain mixed strategies in other type of games and

exploring other encoding schemes as well.
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APPENDICES

Appendix A
Proof: Theorem 2. The expected payoff due to bidhen all others are bidding according
to strategys, is, from section 4.1:

@A (P(x- B+ HB(D)a(x-b)+@L-a)(x-P] x>P

1
BN * P+ HB Wle( x ] else @)

HII(b X)] ={

To find the bidding strategy* that maximizes the expected payoff, we differentiate (1) wrt
b, equate to zero, and, assuming a symmetric strategy among bidders,lrepthgs(x).

This gives us:

a(NxF ( )x+af '( KK X+85(Xd 3+ AR L™ (X
:{xg(x)+axh(x)+(1—a)( - PHXY x>P

X0 X+ a xfiy else

Integrating both sides wxtgives:
af* (XH (x) + £* (X)G(x)

[ v ydyaf yy)dy+@-a)| 3 y- Pdy x>P

X

[ Yoydya] ybydy else

0

Solving forp* gives:

X

[ y& Y dyraf yH (y)dy+ (1-a)[(y- P H(y)dy

G(X) + 2H (%) x>P
B =1 ) “ @
[ y& ydy+af yH(y)dy
g 0 else
G(X) + aH(x)
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Whenx is uniformly distributed,G(X) = x"*; and

G(x) n

j XG(XYdx -1
= X

may be substituted in (2).

We now show that unilateral deviation by a single bidder does not provide benefit. Clearly,
there is no value in submitting a bid greater than the highest valgtéxpfbecause the
bidder can certainly win with a bid that is equal to this highest value. Similarly, there is no
value in submitting a bid lower than the lowest valug(gj, as this bid will certainly not

be a winning bid. Hence a deviating bidder will only provide a bid from the rafje of

Suppose a bidder with valuatioixi 5*(z), z# x. We consider cases when betindz are
smaller than and greater than P, and, also wheR <z andz <P < x
Consider the case wherk P andz < P. The bidder’s payoff is:

[E A ()z)k= Gt x£°( P+ H oA Xx=5*(2)] (3
Further,

[HUA(x k= GX x4 (¥ + H 3o x=£*(X)] (4)

To show that bidders do not have an incentive to unilaterally deviate, we need to show that

EILA*(x ¥ - BII(A*(2,x)]=0 forx<zand for x >z

Substituting (2) in (3) and (4) gives:
BI(B*( % N =] Gydy+af H(ydy (5)

and:
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[ B*().2)b @) % Jzra KX % ¥+[ G ydy+a[ H(ydy (6)

Subtracting (6) from (5) gives:
EITA (% X - BIA* (2, X)]
=( z X Gx+aH X]—I[C{waH(y)]dy

=( z Y(1-a) G2 +aK(2] - [[(l-a) G Y +aK(Y]dy

whereK(x) is the probability that x is among the k highest bidde(s) = G(x) + H(x).
The expression above is non-negative, by an argument similar to that provided for the
derivation of the equilibrium bidding strategy in a classical first-price auction in [Krishna

02], for both x> zand x< z, because bot6(x) and K(x)are monotonic increasing.

We now examine the case for P and z >P. The expected payoff for bidding(#), when
x>Pis

[E 5 ()z)k= G} xB*( D+ H A x-B*(2)+1-a)(x-P)] (7)
Further,

[HCA(x X =GN x=4()) + HI[a(x=* (X)) +L-a)(x-P)] 8)
Again, we need to show thaEI{ A* ( X ¥ — BII(B* (2),x)]> 0, whetherx < zand for

x >z Again, by substituting the expression f¢x), we obtain:
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BT 8* (%), %)]
G ydy+a| HYdy+@-a)l( x B H X—[( y- BHydy] )

[ @ ydy+a| Hydy+ @-a)[ H()dy
Similarly,
EETI( 8 (2, %)]
= @t x Jera KX x 3+ [ Gydy+af H(Ydy+(@1-a)[(z- P H(2)

~[(y- PH Y

or:
EII( 5™ (2, X)]

= KX *x 3+] Qydy+af H(ydy+@-a)] H(ydy (10)

Hence

z

[EC 4 ()x)k— BIA*( % N=(2z Y K- [ K(ydy (11)

X

Again, the above expression is non-negative bedé{x3és monotonic increasing.

Now we examine the case when x < P.4Jging (10) and (5) we obtain:

EITA*( X X - BI(A* (2, )]
=( 2 § Gy+aHA+[[G(Y)+aH(Y)Hy- (-a)] H ydy (z- )(-a)H(2)>0

by argument as with the case P and x< P.
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Thus we have shown that bidders do not have an incentive to devia* framen it is
the strategy used by all other bidders. Heftcis an equilibrium strategy @ < f* <x

andg* is monotonic increasing.
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Appendix B
From section 4.3, we know that the expected payoff for the two-stage game with second-
price auction is:
J bG(ay

HIT] = G(ﬂ’l(b))(X—‘)W) + H( B (D)[a(x-b)] where x<P (1)
To find the bidding strategy* that maximizes the expected payoff, we differentiate (1) wrt
b, equate to zero, and, assuming a symmetric strategy among bidders,repthgs(x).
This gives us:

X0 )= B( X § ¥+axfy-aHYL (Y-apf(xh(x)=0 2

To solve the partial differential equation, we have to substit(xgfor specificn, k anda.
In the following examples, we substitute= 1 based on experiment results obtained in

chapter 6. We also assumis uniformly distributed.

Forn = 8 bidders andk = 2 items:

We have H(x)= 7x° - 7x’, G(X) = X', and h(x)= H'(x)= 42 — 49x°. Substituting (2)

with H(x), G(x)andh(x), it gives:

B (X) =

6X—-64* (X)
T x ©

Using Matlab, we can obtain the solution of (3) to be:

B () =2x
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Forn = 8 bidders and = 3 items:

We haveH (x)= 14X’ — 35x° + 21x°, G(X) = x", and h & )= 98¢ — 210¢ +105x".
Similarly, substituting (2) withid(x), G(x)andh(x), it gives:

15%— 30%+ 15% = B * (X)A5R — 30X + 15X )+ B* (X)(2X — 5x° +30x°)  (4)

Using Matlab, we can obtain the solution of (4) to be:

B* (%) —i+ 3 - 5832 45¢* +324x? — 1944 (6 — 9)'? +1944x+9030x° N
17 17017 X (2x—3)°
+108x® +14563%° —180180¢ + 40040(9)
X° (2x-3)°
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